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Abstract 

This paper will discuss the conversion of gas produced from biomass into liquid fuel 

through the combination of naturally occurring processes, which occur in landfills and anaerobic 

digesters, and a gas-to-liquids (GTL) facility. Landfills and anaerobic digesters produce gases 

(LFG) that can be converted into syngas via a Tri-reforming process and then synthesized into 

man-made hydrocarbon mixtures using Fischer-Tropsch synthesis. Further processing allows for 

the separation into liquid hydrocarbon fuels such as diesel and gasoline, as well as other middle 

distillate fuels. Conversion of landfill gas into liquid fuels increases their energy density, ease of 

storage, and open market potential as a common “drop in” fuel. These steps not only allow for 

profitable avenues for landfill operators but potential methods to decrease greenhouse gas 

emissions. The objective of this paper is to present a preliminary design of an innovative facility 

which processes contaminated biogases and produces a valuable product. An economic analysis is 

performed to show feasibility for a facility under base case scenario. A sensitivity analysis is 

performed to show the effect of different cost scenarios on the breakeven price of fuel produced. 

Market scenarios are also presented in order to further analyze situations where certain product 

portions cannot be sold or facility downtime is increased. This facility is then compared to 

traditional mitigation options, such as flaring and electricity generation, to assess the effect each 

option has on cost, energy efficiency, and emissions reduction. 
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1 Introduction 

1.1 Background for Research 

An increase in the use of renewable energy and fuels has been occurring over the past few 

decades as energy demand rises along with the global temperature. The global energy demand is 

ever increasing with the world’s rapidly growing population. According to International Energy 

Outlook 2013, the current global energy consumption will increase by about 56 percent in the next 

three decades, from 524 quadrillion Btu to about 820 quadrillion Btu [1]. As of 2014, the United 

States oil reserves was estimated to be around 39 billion barrels with the world oil reserves 

amounting to about 1656 billion barrel [2, 3]. In the same year, the US was consuming 

approximately 19.1 million barrels per day, or ~20% of global consumption, which amounted to 

92 million barrels per day [4, 5]. At current rates and reserves, the United States would consume 

its own reserves in almost 6 years, and the world’s reserves would be depleted in just over 50 

years. Countries around the world have set forward a number of standards and policies in order to 

increase the use of renewable sources and limit the use of fossil fuels, thus decreasing their carbon 

emissions [6]. This includes a large push for the use of renewable fuels which reduce the impact 

of man on the environment [7] 

Although moving the electric grid to renewable sources can fix many energy demand 

issues, it is additionally important that energy dense transportation fuels be renewably generated 

for the future of energy development. Limitations in renewable fuels are commonly seen in sources 

which are temporary, small-scale, or relatively expensive to traditional energy counterparts. 

Modern day renewable fuels will require diverse feedstocks and depend on a wide array of 
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technologies to fill the gaps left by fossil fuels [8]. A major portion of global transportation services 

are operated using liquid hydrocarbon fuels, currently derived from fossil fuels, which are 

presently a plentiful, but nonrenewable, resource. A minimal impact switch could be achieved if 

the fuel used is not altered, but instead the method of producing that fuel is changed to renewable 

processes. Generation of diesel fuel and gasoline can occur by gas-to-liquid processes (GTL), 

which involve catalytic conversion of CH4, CO2, and H2O into syngas (mix of H2 and CO). This 

syngas can then be synthesized into artificially produced fuels. Natural gas, whose major 

component is CH4 (methane), is a prime candidate for use in these processes. In the United States, 

the estimated amount of recoverable natural gas was 67 trillion cubic meters as of 2012. Use of 

advanced gas recovery techniques, such as hydraulic fracturing has increased the amount of viable 

gas locked inside the US [9]. While widely available, natural gas is a sequestered carbon source 

and its use contributes substantially towards an increase in greenhouse gas emissions. Due to the 

variable cost of natural gas, and large general expense of the catalysts used in these processes, 

these are still considered generally unfeasible projects [10]. In this case liquid fuels are produced 

by converting one fossil fuel into another while using a great deal of money and energy. 

Since CH4 is also a greenhouse gas which is commonly produced by humans, a number of 

issues can be solved simultaneously by using anthropogenic sources of methane for production of 

fuels. A quarter of this methane comes from municipal landfills, which act as large bioreactors. 

Using landfill-produced methane will cause the reduction of greenhouse gas emissions from the 

landfill, and the subsequent emissions from the burning of fossil fuels. 

1.2 Biomass 

Biomass is a composition of matter derived from living organisms or their byproducts. 

Different forms of biomass include agricultural crops, agricultural or bio-product residues, algae, 
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and municipal or animal wastes [11]. Energy from biomass is the earliest form of energy 

harvesting, and originated with the combustion of wood, plant matter, and waste products in early 

human history. Although the first uses of biomass were simple, it still remains a major supplier of 

energy at 15-25% of the world total. Since the advent of the industrial revolution and discovery of 

a wide variety of fossil fuels, many industrialized countries have turned away from biomass use. 

Many less developed countries still use biomass as a primary source of energy; from cooking and 

heating uses, to waste processing. [12]  

The fossil fuels consumed by the world originate from sequestered biomass and carbon 

sources. These sources, with the addition of heat and pressure, are converted into significantly 

more energy dense substances over time. With increasing interest in renewable fuels from 

developed nations, humans have sought process methods in order to decrease the time it takes to 

produce fuel from millions of years to immediate production. [13, 14]. Biomass that is converted 

into liquids for either transportation use or energy storage are termed biofuels. Early methods of 

ethanol production were the fermentation of simple sugars from crops. Use of food crops has led 

to debates about using food for the production of fuel. The largest problems surrounding food 

crops for biofuel is the immense tracts of land required to produce the needed amounts of fuel, and 

the substantial energy required to produce these crops. These limit the capacity that agriculture 

crops can contribute to reducing world fuels needs. In order to reduce competition between fuel 

requirements and food needs, advancements in biofuel technologies lead to the use of waste 

products which do not compete with current food sources [15-17]. Some of these advances have 

led to crops which are directly meant for the production of biofuels and bio-products. Initial 

developments in the field of biofuel production led to large-scale processing of cellulosic ethanol. 

These include many fast growing grasses, woody biomass tree farms, and bagasse [18]. Besides 
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the use of fuel crops, other sources use inedible cellulosic portions of biomass or food crops which 

typically come from agricultural and forestry discards [19, 20]. Issues with using these types of 

waste, as with many biomass products, is their seasonal availability and lack of proximity to 

production and distribution sites.  

In order to reduce the cost of using biomass and increase the efficiency of use, low-value 

lignocellulosic biomass (woody biomass) must be converted into useable portions. Currently, the 

difficulty of converting lignin into valuable materials by using biological methods has left this 

conversion financially unfeasible. This has led to advanced gasification methods which force 

production of anaerobic gases through thermochemical breakdown of organic chemicals. 

However, this process by which syngas is produced is energy intensive and varies widely with the 

composition of the feedstock [21, 22]. Biological processes streamline this conversion by 

producing decomposition gases with a wide variety of conditions, while maintaining a fairly 

consistent product composition. Maintenance of bioreactors at these conditions is cost intensive as 

they must be large, sealed from oxygen permeation, and be constantly tended [23]. Natural 

examples of bioreactors exist such as swamps, while manmade landfills exhibit all of the required 

prerequisites for a bioreactor. 

1.3 Landfills 

In the United States, landfills remain a primary method for the disposal of Municipal Solid 

Waste (MSW). As of 2013, the U.S. generated 254 million tons of MSW per year, discarding 167 

million tons of this waste into landfills [24]. Approximately 38-53% of this waste is biodegradable, 

and is capable of being broken down by microorganisms to produce methane, carbon dioxide 

(CO2) and water using natural processes such as acetogenesis and methanogenesis. [25] This 

landfill gas (LFG), released by natural anaerobic digestion of MSW, is approximately 54% CH4 
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and 46% CO2 on a dry basis [26]. Landfill microorganism cultures work symbiotically. When 

MSW is initially landfilled and the cell is closed, the waste undergoes aerobic digestion producing 

carbon dioxide until the oxygen within the waste and landfill cell is consumed. After ~1 year, 

enough oxygen is consumed that anaerobic digestion of waste begins, and bacteria begin to 

produce methane. A diagram showing this process is shown in Figure 1. 

 

 

Figure 1: Landfill Gas Phases as a Function of Time after Placement 
  

ATSDR 2008. Chapter 2: Landfill Gas Basics. Figure 2-1, pp. 5-6. 

http://www.atsdr.cdc.gov/HAC/landfill/PDFs/Landfill_2001_ch2mo

d.pdf. Image is public domain through the EPA. 

 

A landfill’s gas flow rate typically changes depending on the composition of the waste (i.e. 

each landfill is unique), as well as the time of year and the amount of rain received. A significant 

amount of planning goes into renovation and creation of new landfills, adding to their appeal for 
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coexisting projects [27]. The lifetime, or the time period in which gas is produced in viable 

amounts, typically ranges from 10 to 15 years. However, this can be altered with methods of 

enhanced gas recovery and changing the minimum viable flow rate [28]. 

Currently the Environmental Protection Agency (EPA) is keeping track of 636 operational 

LFG projects which generate 1978 MW of electricity and 305 MMSCFD of gas for other uses. 

There are 440 candidates’ landfills which are planned to add 885 MW electricity and 490 

MMSCFD onto current capacity. [29] Of the currently operating usage capacity the average US 

landfill generates approximately 1970 SCFM. (See Appendix A) 

 

Figure 2: National/State LFG Gas Production Distribution 

 

Figure 2, above, is the distribution of unique, operational landfills which report LFG 

collection rates. The distribution of LFG output is generated from EPA Landfill Methane Outreach 

Project data on for voluntary gas reporting. 
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1.3.1 Landfill Gas (LFG) 

LFG can contain upwards of 50% methane by mass, having an energy content of 450-600 

BTU/ft3. Due to high energy content of landfill gases, efforts are made to capture and use it as a 

resource. Many methods exist to collect and utilize LFG as well as increase LFG evolution rate 

from the landfill. These include the use of landfill runoff, commonly called leachate, as a way of 

wetting the MSW and increasing gas production rate. The EPA currently regulates that all new 

landfills mitigate the emission of methane and other hazardous contaminants such as hydrogen 

sulfide. In addition to the two major gas components (CO2 and CH4), LFG contains siloxanes, 

halides, volatile organic compounds (VOCs), and a large variety of contaminants considered Non-

Methane Organic Compounds (NMOCs), which vary depending on waste composition [30, 31]. 

In our study 2 model contaminants will be used. Hydrogen sulfide (H2S) is detrimental to metal 

catalysts and is present in relatively high concentrations. Silica compounds called siloxanes, which 

will be used to model larger, non-reactive molecular contaminants are also present in LFG. 

Siloxanes are a group of manmade organic compounds which contain silicon, methyl, and oxide 

groups. There are 8 common siloxane compounds which have become a significant issue in 

modern landfills due to the increased use of silica compounds in household products [32]. In this 

study, octamethylcyclotetrasiloxane is used as the model siloxane due to its prevalence in LFG 

representing more than 50% of measured siloxanes [33]. Combustion of siloxanes produces silicon 

dioxide which forms an abrasive deposit layer on vital engine parts and machine parts. This buildup 

causes a reduction in heat conduction, part lubrication, and changes combustion chamber 

geometry. Silicon dioxide can also deactivate catalytic converters, leading to higher exhaust 

emissions. Acceptable siloxane concentrations range from 0.03-28 mg/m3 in electrical turbines or 

gas engines depending on the manufacturer specifications [34]. Some techniques developed for 
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siloxane removal include the use of activated carbon, silica gel, or alumina absorbents. Activated 

carbon has limited regeneration capabilities while silica and alumina absorbents can be regenerated 

for subsequent reuse by heating. Other absorption methods, which use liquid stripping agents, can 

be used to remove siloxanes. These include polyethylene glycol, dimethyl ethers, or water; 

although they are not very effective methods and incur significant operating costs [35]. Unlike 

siloxanes, H2S is reactive and can be removed by a multitude of methods which include ionic 

liquids, solid scavengers, and catalytic reactors [36-38]. Selection of sulfur removal technologies 

is greatly dependent on volume of product to be processed and recovery of percentage of sulfur to 

be removed. For medium scale facilities with varying concentrations of sulfur, reacting a saturated 

gas stream with an iron solid scavenger has been deemed a solution. Iron solid scavengers are Iron 

oxide beds which turn H2S into water removing the sulfur and creating iron pyrite (FeS2) [39, 40] 

Table 1: Reported Components of Landfill Gas 

Major Components Trace Components 

Component Mass %  

CH4 45-60 Halides, toluene, acrylonitrile, benzene,  

dichloroethane, dichloroethylene, 

dichloromethane, carbonyl sulfide, ethyl 

benzene, hexane, methyl ethyl ketone, 

tetrachloroethylene, trichloroethylene, 

vinyl chloride, and xylenes. 

CO2 40-55 

N2 2-5 

O2 0.1-1 

NMOC 0.01-0.6 

H2S 0-1 

 

A common method for disposal of LFG is gas flaring. Other methods which are currently 

available include power generation and production of compressed or liquefied natural gas 

(CNG/LNG). Issues with current options for using LFG include having a relatively low $/BTU of 

the product, and its allowance for a significant margin of economic potential when generating 

common liquid transportation fuels. By utilizing technologies that capture methane from MSW 

landfills for extended uses rather than just mitigation of hazards, landfill operators can reduce or 
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even remove the cost for compliance.  Many local governments across the US are achieving 

energy, environmental, health, and economic benefits in addition to meeting emissions standards. 

LFG can be used in various forms for energy including electricity, boiler fuel, steam, alternate 

vehicle fuel, and pipeline quality gas. 

1.4 Emissions and Regulations 

Currently the EPA regulates the release of harmful gases such as H2S and VOC’s into the 

air from landfills; under 40 CFR part 60. Regulations are based on opening date of a landfill as 

they are “grandfathered in” to emissions regulations. Landfills that have accepted waste after 

November 1987 are subject to emission regulation under 40 CFR 60.33. Any landfill which 

generates NMOC’s and a capacity of over 2.5 million cubic meters must mitigate their hazardous 

emissions under the Clean Air Act (40 CFR part 60 subpart WWW) [41], which is typically done 

through initiation of a flaring project. Combustion of dangerous compounds and gases is preferred, 

however it generates the increased levels of CO2. The ability to use potential emissions as an offset 

for further greenhouse gas emission from fossil fuel holds promise, as 22.38 lbs of CO2 are 

generated from burning 1 gallon of diesel fuel and 19.68 lbs from 1 gallon gasoline [42]. Carbon 

dioxide emissions are preferred over methane, as it has over 25 times the global warming potential 

as carbon dioxide on a weight basis [43]. Landfills represent a significant portion of US greenhouse 

gas emissions generating 103 million metric tons or 17.2% (equivalent tons CO2) as of  2012 [44]. 

Since a 60% of CH4 emissions come from human activities, and its effect is considered short-lived 

at 12 years, a reduction in CH4 emissions is considered a swift and effective method of reducing 

greenhouse gas emissions [45]. An LFG energy plant can reduce methane emissions from a MSW 

landfill by 60 to 90 percent depending on the efficiency of capture [46]. Even installation of LFG 

mitigation technologies after landfill closure can reduce lifetime landfill emissions by 20% or more 



10 

 

[47]. The annual emission reductions of a typical 3 MW electricity generation project using LFG 

is about 34,700 metric tons of carbon equivalents per year - the environmental equivalent of CO2 

emissions from about 296,000 barrels of oil [48]. The annual methane and carbon dioxide emission 

reductions of a typical direct-use LFG to energy project, assuming 1,000 scfm, is 135,750 metric 

tons of carbon equivalent per year; the environmental equivalent of the carbon emissions from 

15.3 million gallons of gasoline consumed [49]. 

1.5 Current Landfill Gas Usage Methods 

1.5.1 Flaring 

Flaring is the most commonly used option for facilities which are small or produce a limited 

amount of LFG. Currently, flares are used in cases in which too little gas flows through the system 

to support an alternate use project. Even projects which use LFG for other purposes must maintain 

a flare for safety and emissions concerns [50]. This option is used to directly mitigate the release 

of harmful gases such as H2S, CH4, and other VOCs by combustion. Issues that arise when using 

a flaring system include the fact that it incurs cost with no benefit other than meeting emissions 

and safety regulations [51]. In landfills which produce significant quantities of LFG, this resource 

could be used for energy instead of destruction by flaring. This leads to a potentially valuable 

resource being wasted, when it could be profitable and also further mitigate CO2 emissions by 

better use of the gas.  

1.5.2 Direct Burn for Electricity or Heat 

The use of LFG for electricity generation is well known [52]. Currently, 70% of facilities 

use LFG for this purpose [53]. The landfill gas is combusted in order to run reciprocating engines 

directly or turbines for electricity production. The process and machinery used varies greatly with 

a number of factors that include LFG flow rate and distance from residential or industrial areas, 
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which can conclude whether heat generation is a profitable option. In some cases this method 

encompasses “mass burn”, where the MSW is burned directly and the ash is landfilled after 

incineration. This method is economically predictable and commonly used. However, in the cases 

of LFG use for generation, profits are generally not as high as expected and are usually only 

feasible for public entities due to other socioeconomic benefits [54]. Some of these benefits are 

included in mass burn facilities, where increased land value leads to incineration of MSW. Use of 

LFG for heat in industrial facilities reduces the required load of natural gas and can lead to 

significant savings by using LFG to power co-fired boilers [53]. 

1.5.3 LNG/CNG Generation 

This method has grown in popularity for use in recent years. LFG is cleaned, purified of 

CO2 and then either compressed or liquefied for use in commercial vehicles or for sale on the open 

market. This has become an interesting use for landfill gas, as natural gas is considered a cleaner 

burning fuel. The use of natural gas is attractive due to production of fuel on-site, with many 

landfill operators converting trucks to run on natural gas [54, 55]. Issues with this method include 

the high pressures which must be reached in order to separate CO2 from CH4. Compressor and 

utility cost, as well as transportation and storage, are major hurdles in price competition with a 

much cheaper source of natural gas from fossil deposits. 

1.6 Fischer-Tropsch Synthesis (FTS) 

The FTS reaction is well studied and involves the conversion of syngas (H2 and CO) into 

long chain hydrocarbons. This is primarily due to its appeal in generation of long chain 

hydrocarbons through the reaction of simple gases. Research began in 1902 with the discovery of 

catalytic activity in transition metals, such as Co, causing CO hydrogenation into CH4 [56]. This 

was followed in 1925 by the processes namesake Franz Fischer and Hans Tropsch, who invented 



12 

 

the process by which Co metal catalyst could be used to generate hydrocarbon liquids [57]. Fischer 

Tropsch (FT) synthesis is a process in which hydrocarbons are polymerized and joined stepwise 

on the surface of the catalyst, as shown in equation (1).  

 𝑛𝐶𝑂 + (2𝑛 + 1)𝐻2 → 𝐶𝑛𝐻(2𝑛+2) + 𝑛𝐻2𝑂 (1) 

Research has been ongoing since the advent of FT synthesis, leading to an appropriation 

of research in GTL processes. Co and Fe are well known catalysts for FT synthesis and are 

extensively compared in a number of papers [58, 59]. When used for FT synthesis, Co catalysts 

have greater activity, selectivity to hydrocarbon production, and lower reaction temperature 

required for reaction onset. These attributes make Co a preferred catalyst for use in lower 

temperature GTL reactors [57]. Supports usually include Al2O3 or SiO2, however a large number 

of factors exist based on the support and catalyst morphology. In many cases supports act as 

shaping agents to produce a larger portion of desired long chain hydrocarbon products [60-62]. 

Common drawbacks of using Co catalysts are their high H2/CO reactant ratios, which are required 

in order to avoid deactivation of the metallic catalyst by coking. Co catalysts typically operate at 

a ratio of 2:1 H2/CO or greater to drive the reaction, while Fe catalysts operate much lower at 0.6-

1 H2/CO due to affinity for the Water-Gas Shift reaction. In order to increase H2/CO ratios in the 

feed gas, development of methods which can produce higher quantities of H2, typically input as 

water steam. Other common practices include operating at elevated pressures in order to overcome 

equilibrium limitations of the reactions, as well as enhancement of other properties.  

Common issues experienced when using FT synthesis catalysts include the deactivation of 

the metallic catalyst by contamination, or as a detrimental effect of reaction equilibrium conditions. 

Contamination of the catalyst by sulfur, heavy waxes and tars, or inorganic compounds can reduce 

active catalyst sites, or cause unfavorable generation of alcohols or other undesired products. 
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Effects of the reaction equilibrium are consistently a problem as carbon formation, excess steam 

buildup, or transportation limitation of products or reactive intermediates can also cause reactor 

fouling. Because the FT reaction is exothermic, low pressure steam can be generated to offset the 

energy requirements. These gas-phase reactors have large active volumes which can lead to heat 

buildup, and reactor hotspots which can lead to runaway reactions and undesirable kinetics. Small 

changes in temperature through FT reactors can cause relatively large changes in product 

composition. Recent interest in FT synthesis is due to use of bio-derived renewable fuels for the 

generation of liquid transportation fuels. The cost associated with generation of these fuels is 

generally dependent on the cost of the biomass feedstock. Feedstocks that are considered waste or 

a nuisance can be an easy way to reduce the cost associated with acquiring feedstock. Past research 

from other group members has looked at the use of a number of biomass options [63, 64]. 

Advances in FT catalysts are aimed heavily at generating more robust catalysts that can 

produce more desirable products. Work shown in Gardezi et al. has led to the creation of a Co 

eggshell catalyst, which reduces mass transfer issues and homongenizes the reactor temperature 

[65, 66]. The use of this catalyst reduces the formation of heavier tar products, while increasing 

the conversion of syngas into desirable products which are larger than CH4.  

1.7 Methane Tri-Reforming 

Tri-reforming, or Methane Tri-Reforming (MTR) is the combination of the dry reforming 

of methane, steam reforming of methane, and the partial oxidation of methane (POM), which 

proceeds according to the following reactions: 

 Dry Reforming (CO2 Reforming)  

 
𝐶𝐻4 + 𝐶𝑂2 ⇔ 2𝐶𝑂 + 2𝐻2     ΔH = 247.3

kJ

mol
 (2) 
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 Steam Reforming (SR)  

 
𝐶𝐻4 + 𝐻2𝑂 ⇔ 𝐶𝑂 + 3𝐻2     ΔH = 206.3

kJ

mol
 (3) 

 Partial Oxidation of Methane (POM)  

 
𝐶𝐻4 +

1

2
𝑂2 ⇔ 𝐶𝑂 + 2𝐻2     ΔH = −35.6

kJ

mol
 (4) 

 

Other reactions which occur, either as intermediaries or side reactions, are the WGS 

Reaction and combustion of methane. Other equations below deal with the formation of coke by 

decomposition of methane or by Boudouards equilibrium. 

 Water-Gas Shift  

 
𝐶𝑂 + 𝐻2𝑂 ⇔ 𝐶𝑂2 + 𝐻2      ΔH = −41.09

kJ

mol
 (5) 

 Combustion of Methane (POM)  

 
𝐶𝐻4 + 2𝑂2 ⇔ 𝐶𝑂2 + 2𝐻2𝑂     ΔH = −880

kJ

mol
 (6) 

 
𝐶𝐻4 + 1.5𝑂2 ⇔ 𝐶𝑂 + 2𝐻2𝑂     ΔH = −520

kJ

mol
 (7) 

 Thermal Decomposition of Methane  

 
𝐶𝐻4 ⇔ 𝐶(𝑠) +  2𝐻2        ΔH = 74.9

kJ

mol
 (8) 

 Boudouards Reaction  

 
2𝐶𝑂 ⇔ 𝐶𝑂2 + 𝐶(𝑠)     ΔH = −172.2

kJ

mol
 (9) 

MTR has a number of benefits for the production of syngas. Reactions (2), (3), and (4), all 

produce syngas with a varying ratio of H2/CO. The use of steam reforming is primarily to increase 

the H2 available for the reactor by addition of reactant steam.[67] The balance between steam and 
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dry reforming generates the required ratio for input into the FT reactor [68]. POM is used in order 

to generate heat in-situ that can be used to increase energy efficiency by offsetting required energy 

inputs. MTR uses 45.8% less energy and produces 92.8% less CO2 compared to dry reforming.  

When compared to steam reforming, MTR uses 19.7% less energy and produces 67.5% less CO2 

[69-72]  

Typically, MTR catalysts involve Ni or rare metal catalysts on a high surface area support 

that has high oxygen availability, referred to as oxygen storage capacity (OSC). Although the best 

activity in MTR, and other variations of reforming reactions, occurs on rare metal catalysts such 

as Pt, Rh, and Ru, the use of Ni is purely an economical choice [73]. Since coking and deactivation 

by contamination are a likely occurrence, a less expensive catalyst is chosen. Use of CeO2 is due 

to its high OSC and is typically used with Ni [74-78]. ZrO2 is used in conjunction with CeO2 as it 

has be shown to increase dispersion of Ni metal particles on the surface, reduce support and active 

metal sintering, and stability at high temperatures [79-84]. The (Ce, Zr)O2 solid solution has been 

effective in reducing sintering, coke formation, and increased H2/CO product ratios.[85-87] 

Although generally explained as catalyst resistance to coke formation, many explanations 

of MTR involve carbon buildup as an important factor in reaction equilibrium. Carbon 

restructuring of active Ni species is important to the cleavage process of removing oxygen from 

support species [88-90]. However, excess buildup of carbon species causes surface coverage and 

deactivation of the catalyst, as well as carbon whisker formation [68, 91, 92]. The effect of POM 

mechanisms is vital to oxygen exchange from the catalyst surface and from the support [79, 93]. 

Magnesium is added as a surface co-catalyst as it reduces carbon buildup on the catalyst surface 

as well as reducing the degree of sintering by the Ni surface catalyst. 
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Previous work from group members has focused on using a specific 60/40 (Ce, Zr)O3 

support with an 8% by mass Ni and 8% Mg. This work looked into optimum run conditions which 

are used throughout this study and design [94]. 

1.8 Proposed Method: LFG to Liquids (LFGTL) 

Liquid fuels from LFG are energy dense, can be easily stored, and have a place in the 

existing marketplace as a drop in replacement for fossil fuels. The process of generating liquid 

fuels from waste gases such as LFG could be very beneficial in locations or situations where access 

to traditional fossil fuels are not available. Typically these countries import the majority of their 

energy in the form of fossil fuels, further adding to global emissions. 

A process that would turn waste gas generated by landfills into a high energy content liquid 

transportation fuel would be advantageous. Converting LFG into diesel fuel would increase its 

$/BTU and increase its overall energy density and ability to be stored. Diesel fuel is commonly 

used by the transportation industry and for commercial vehicles [95]. Advantages of diesel 

production over other transportation fuels is its suitability for generation by Fischer Tropsch 

synthesis (FTS) and the fact that its composition is straight chain hydrocarbons, which FTS 

produces prominently [96]. Using diesel fuel over LNG/CNG is primarily due to diesel’s ability 

to be a “drop in fuel”, where infrastructure for its sale, distribution, and use are already in wide 

practice. This reduces extra and hidden costs associated with fuel production. This can be seen in 

LNG/CNG, which have a comparable cost to traditional fuels, yet are still only used in discrete 

areas [97]. 
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Figure 3: Cost Breakdown for a Gallon of Gasoline 

 

Using fuels which are generated outside of the refinery system incur different costs than 

those that are. Figure 3 above, is calculated from EIA pricing data in Appendix H, showing the 

breakdown in the cost for a typical gallon of gasoline. The production of diesel for in-house uses 

can eliminate refining costs and can still compete, as 10% or more of costs can be reduced.  

The composition of diesel fuel required for sale on open market is determined by a host of 

organizations. These include the EPA, which regulates additives and emissions [50]. Methods of 

testing performance and specifications are maintained by ASTM standards, Section 5, for testing 

color, density, viscosity, flash point, and a large number of other properties. FTS produces mostly 

saturated hydrocarbons, at 98% of total mass, while most diesel produced from fossil fuels can 

contain 25-75% olefins and aromatics and have less than 50% saturates [98]. This leads to FT fuels 

having a larger cetane index in comparison.  
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2 Modeling and Design 

2.1 Parameters 

The following parameters, listed in Table 2 and shown visually in Figure 4, were used as a 

model for landfill gas composition in the designed facility. It is important to note that this value 

was calculated by determining the dry gas composition, then saturating it with water at atmospheric 

pressure and 40 C. This was meant to simulate conditions in a landfill, where biologic processes 

heat the gases and leachate processing maintains dew point. 

Table 2: Model Composition Used 

 

 

 

 

 

 

Figure 4: Model LFG used in Paper (% Composition of Saturated Gas) 

Water 7.31

Carbon Dioxide
38.18

Methane 52.49
Oxygen 0.41

Nitrogen 1.54

H2S 0.07

Siloxanes 8.91E-
05

Other 2.02

Component % Composition 

CH4 55 

CO2 42 

N2 1.7 

O2 ~0.4 

H2S 0.07 (700 ppm) 

Siloxanes 0.00009 (0.9 ppm) 
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After processing of the gas through the reactor, the limiting factor in production of fuel, 

the facility was designed with the following order of priorities. 1) The diesel fuel produced was of 

sufficient quality, 2) reduction of heating and cooling needs by heat integration of the facility, 3) 

elimination of heating costs by burning fractions of remaining fuel. An important heuristic that 

was used throughout the design of the facility was to decrease the outside energy required to run 

this facility. Overall, it was decided that barring additional plant installations, such as adding solar 

heating or photovoltaics, the majority of energy could be derived by burning undesired products 

in the furnace. 

2.2 Assumptions 

The basis flow rate of LFG for this paper will be 2500 SCFM, with constant composition 

and no change in contaminant concentration. This basis will be considered the minimum viable 

flow rate, or the flow rate which is maintained over the 15 year life span of the facility. This flow 

rate represents only a small portion of MSW facilities. However, it was chosen as economy of 

scale for FTS systems is exponentially more viable at larger scales. Pretreatment systems were 

assumed to be 100% effective until saturation of the media. It is also assumed that there is no trend 

or alteration in flow rate due to the use of a minimum viable flow rate. Although contamination 

concentration does not change, it is assumed that all contaminants can or will cause damage to 

machinery and equipment and therefore must be removed during pretreatment to increase the 

longevity of the facility and equipment. To correct for this, compressors and pumps were priced 

with added spares and an increase in maintenance costs was included to resemble an increase in 

maintenance schedule. In modeling siloxanes, all siloxanes were grouped as a model siloxane, 

octamethylcyclotetrasiloxane. This is a simplification as this species is dominant in siloxane 

overall composition, representing greater than 50% of total siloxanes in LFG [99]. Pressure drop 
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throughout the facility was not taken into account, as the placement of facility equipment and their 

final designs were not calculated. Prices of transportation fuels can change dramatically over a 

period of a few years and these changes are assumed to be generally consistent or on the rise, 

therefore profitability at a lower cost would mean profitability in the future.  

2.3 Limitations 

This is a preliminary analysis of the technology and its feasibility of use. Therefore, a 

number of simplifications limit the scope and accuracy of the analysis. Some limitations of this 

analysis are a simplifications of very complex factors, such as changes in LFG flow rate throughout 

the day or throughout the year according to temperature and rainfall. Not all factors are taken into 

consideration when looking at the sensitivity of the feasibility analysis, such as equipment 

inefficiencies when gas flow rate changes or when in non-optimal conditions. Surge capacity is 

also not taken into account. Taxes, subsidies, and grants were not taken into account as they are 

different from state to state and year to year. These cannot be dependable factors when looking 

into the feasibility of a facility which is not limited to a certain state. It is not known how many 

times an iron-scavenger bed can be regenerated before needing to be replaced. In this study the 

impact of regeneration is not taken into account. The life span and stability of the catalysts used is 

not fully understood and could be a significant factor in plant uptime. Simplified kinetics are used 

and do not fully assess the effect of process upsets which could alter the product distribution. 
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2.4 Process Design 

 

 

Figure 5: Process Flow Chart 

There are 4 major portions of this plant: 

1. Contaminant Removal and Preprocessing 

2. Tri-Reforming of Methane and Carbon Dioxide into Syngas 

3. Fischer Tropsch Synthesis of Hydrocarbon Fuels from Syngas 

4. Separation and Upgrading of Liquid Fuel Cut 

The gas is first purified and compressed through a series of compressors and absorbent 

beds. A conversion of the reactant gases into syngas occurs in the MTR reactor, followed by 

synthesis into long chain hydrocarbons in the FTS reactor. This gas is then separated by distillation 

or flash column into a multitude of gas components. All hydrocarbons that are considered out of 

range of middle distillate fuels are removed and sent to be combusted in order to offset the required 

energy input of the facility. Due to this inclusion, all energy used to run the MTR and distillation 

towers comes from burning undesired hydrocarbons produced in the facility. 

A recycle stream could be added in after the FTS in order to recover unreacted CO2 and 

CH4. However this separation is costly and is not specific to the components that need to be 
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separated. Another recycle could be added during the separation stages to return a portion of the 

unused fuel cut to the MTR. A recycle stream was not implemented due to a dramatic increase in 

energy required to reform heavy species. Instead, most heavy distillate cuts were kept in the fuel 

product and were balanced with the addition of lighter cuts. The absence of a recycle significantly 

cuts operating and capital costs and increases process simplicity.  

2.5 Plant Design 

 

 

 

Figure 6: Process Flow Diagram 
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2.6 Contaminant Removal and Pre-Processing 

 

Figure 7: Contaminant Removal Bed Setup 

 

Pre-processing contains all the necessary systems to prepare the incoming gas for the 

reactors, which includes contaminant removal and a series of compressors. All compressors work 

at ~3:1 compression ratio and include saturated liquid removal after inter-stage air cooling. The 

reason for contaminant removal is the fact that the final fuel product cannot contain contaminants 

which may negatively impact or cause damage to equipment or to the environment upon 

combustion and the catalytic process used can be stunted, or its effective lifetime reduced, by 

presence of catalytic poisons such as H2S and siloxane gases. Removal of these contaminants 

before any further steps helps to simplify removal, which is easier in the gas phase. This involves 

a two stage system in order to remove H2S in an iron based solid scavenger and the remainder of 

the contaminants on an activated carbon filter bed. Each of the two systems’ stages use a lag-lead 

setup to reduce downtime and optimize contaminate removal. The possibility that the contaminant 

removal beds can be regenerated a few times before needing to be replaced provides advantages 

over other adsorption methods. 



24 

 

Incoming LFG is compressed by a single compressor to reduce the effect of contaminant 

damage to the subsequent compressors while increasing the efficiency of the contaminant removal 

system. This compressor brings the gas from 1 bar to 3 bar which feeds into the Iron based solid 

sulfur scavenger unit. It is designed to decrease H2S from 700 ppm to below 5 ppm. Entering LFG 

must be saturated with water in order to work properly so that iron oxide is converted into Iron 

pyrite and sulfur is effectively removed. Industry uses determine that 1 g of iron scavenger (Sulfa-

treat©) is required to remove 0.01 g of H2S. The gas is then cooled before entering the activated 

carbon molecular sieve where siloxanes and other large NMOCs are removed. It requires 1 g of 

high surface area, acid washed, activated carbon per 0.04 g of siloxanes removed when less than 

1 ppm. After contaminant removal, oxygen is added and the resultant gas is sent to a series of two 

compressors to bring the gas to 21 bar. A recycle stream of light hydrocarbon gases is mixed in 

and the gas is preheated by the outgoing reformer product stream. 

2.7 Tri-Reforming Process 

While steam reforming and dry reforming allow for tuning of the desired H2:CO product 

ratio, partial oxidation of methane allows for an exothermic reaction which works in tandem with 

the first two reactions to reduce the energy required to run the reactor. This reactor is run at 800 C 

and 21 bar so it is assumed that there is a 99% single pass conversion of methane. A Ce0.6Zr0.4 w/ 

8% Ni 8% Mg catalyst was chosen because previous literature studies have shown that it reduces 

coking and reduces sintering. This reactor was operated at 21,00 h-1 GSV in accordance with 

Walker et al. [94]. The MTR can also intake a portion of light hydrocarbon gases (C2 – C6) that 

can be recycled later in the process and reformed again. Steam is mixed with the incoming treated 

LFG to 20% by mole water and then preheated by the exit flow of the reformer, which 

simultaneously heats the input stream while cooling the output. 
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2.8 Fischer Tropsch Synthesis 

The catalyst used is a specialized silica eggshell catalyst that allows for a higher residence 

times which lead to higher conversion without the common problem of hydrocarbons C25+ or 

higher being created [66]. The reactor operates at 21 bar and 230 C and converts 75% of syngas 

into a hydrocarbon stream. The desired products are hydrocarbons between C8 and C16. The 

specific catalyst used limits the formation of tar, alcohol, or unwanted formation of methane. 

 

 

Figure 8: FTS Reactor Product Composition 
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2.9 Separation and Upgrading 

 

Figure 9: Separation Subsystem Diagram 

 

The fuel separation process includes a 3-phase separator at a reduced temperature while 

pressure is held constant for the separation of light gases below C6, heavier hydrocarbons above 

C6, and water. The light gases are sent to be combusted in order to generate heat for the reformer 

and other equipment throughout the plant. The water is removed and sent back into the reformer 

for higher pressure steam. The remaining heavy hydrocarbon stream is flashed to remove 

remaining light gases then sent to a series of 2 distillation towers and 1 packed tower. Although 

many cuts of fuel can be achieved (Diesel Fuel, Jet Fuel, High Octane Petrol), the distillation 

system is tuned to optimize the production of diesel with some remainder of a gasoline precursor 

being created. To obtain this product we run our heavy liquid hydrocarbon stream into our first 

distillation tower where we separate 90% of the components that are lighter than C9 from those 

that are equal to or heavier than C9. This gives us a consistent flash point and energy content with 

that of commercial diesel. The heavier components are then sent through a second distillation 

tower that separates anything higher than C17 from our product diesel. The end result is the 
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production of ~500kg/hr of diesel and 170 kg/hr of gasoline precursor. This equates to 240 gal/hr 

of diesel and 90 gal/hr of gasoline precursor. This is a conversion of ~15 wt% of LFG into fuel 

product. The diesel is considered ready for market sale, however it reaches a better price point 

when sold on site to the landfill operator as taxes, marketing, and distribution costs are forgone.  

 

 

Figure 10: Product Composition of Diesel/Gas Precursor 

 

The gasoline precursor is mostly fuel cuts which can be isomerized through further 

refining, but must be sold and shipped off site to a third party. The quality of this fuel is greater 

than typical crude oil feedstocks used by refineries and incurs significantly lower processing costs. 

2.10 Minor Systems 

A collection of other systems were integrated into the plant that are involved in optimizing 

the use of heat around the facility. Utility water is used to cool multiple streams. Water utility is 

taken in, used, and then cooled in an attached evaporation tower where the remaining water is 

reused. Pumps and other equipment are included with the full system cost of each unit operation. 

Electrical power is provided by an onsite micro turbine system.   
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3 Results and Discussion 

3.1 Assumptions in Economic Analysis 

This economic analysis hinges on the understanding of a few simple heuristics. For one, 

the plant should be financially feasible without tax breaks, government incentives, or other market 

modifiers. This is primarily due to the lack of consistency in availability of these programs, which 

can occur some years but be taken away others. Being dependent upon these factors for feasibility 

would reduce the overall chance of project stability. The second factor is that as a new technology, 

this project will incur many unforeseen costs. In order to combat that occurrence, costs associated 

with experimental pretreatment and reactor technologies were increased to compensate. This was 

done by taking worst case scenario prices on these systems and increasing the amount of 

pretreatment material used in cleanup. These changes also include increased maintenance and 

replacement costs for systems that see a large degree of contamination from LFG. The energy 

content of LFG used is 557 BTU/ft3, this is representative of methane content at 55%. This does 

not include the effect of water content on LFG energy content as this water is removed throughout 

the process. 

3.2 Product Pricing 

The final product has the same flash point, cetane number, and energy density of diesel. 

Although all of these variables are consistent with diesel, the composition of the process product 

varies slightly compared to commercial diesel. Since the purpose of the diesel is to be used on site 

and avoid the costs associated with commercial distribution, selling the diesel very close to market 

value is justified. Synthetically generated diesel is traditionally of a higher quality when compared 
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to fossil fuel diesel because the process produces long chain hydrocarbons which are favorable in 

diesel. However, this increase in quality does not increase the value of the product, but rather just 

the approachable market. The second product of this process, the mixed hydrocarbons or “gasoline 

precursor,” also differs from traditional commercial composition. The gasoline precursor that is 

produced still needs to be sent to a refinery for isomerization and final finishing in order to be sold 

on the open market.  

In order to find a price for both diesel and gasoline, a comparison between their prices must 

be made. In an open market sale the price ratio of diesel to gasoline is ~1.126, taking into account 

all seasons from 2009 to 2014 based on EIA pricing data (Look at Appendix H and Figure 3 for 

gasoline cost breakdown). Although this does not mean that this facility can always match these 

prices, it indicates an open market scenario that the facility must meet in order to maintain 

feasibility.  The costs of distribution are also subtracted (~10%) because this is not a step that sale 

on site would require. All other systems are similar between the production of fossil fuel and 

synthetic diesel. Breakeven prices of diesel and gasoline were ~$2.73 Diesel and ~$2.18 gasoline. 

Table 3: Liquid Fuel Production Volume per Year 

Component US Gallons Produced 

Diesel 2,021,760 

Gasoline precursor 758,160 

 

Table 4: Fuel Revenue per Year 

Component Revenue per year 

Diesel $5,519,000 

Gasoline precursor $1,653,000 

TOTAL $7,180,000 
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3.3  Equipment Costing 

The equipment is going to be exposed to a large amount of contamination, which can vary 

depending on what is in the landfill and the waste that is entombed. This leads to degradation of 

facility equipment. The equipment cost was purposely increased by 50% so that it would offset the 

replacement costs of the compressors, particularly the compressor prior to pretreatment. The 

reactors were priced as if they were shell-in-tube heat exchangers. This is primarily due to 

temperature control and cost being the most known cost at a larger scale. The 3-phase separator, 

pretreatment beds, and flash vessels were sized and costed by hand. 

In the proposed system, ChemCad is used for plant design and calculation of 

thermodynamics, phases, and streams. Capcost is used to cost pieces of equipment. 

3.4 Land Costing 

It is assumed that the cost of purchasing land was negligible as the facility would be built 

on a landfill. This land is generally considered undesirable or already owned by the customer or 

operator. Due to many LFG agreements, there is usually an acknowledgment that the plant would 

take over the cost and duty of greenhouse gas emission as well as dealing with subsequent 

emissions fines from the landfill operator. This would also be assumed to be negligible due to the 

use of green energy credits and carbon offsets. There is also possibility of the facility being owned 

by the landfill itself, in which the individual cost would be null. 

3.5 Capital Investment 

A significant capital investment is required to operate this facility. Approximately 40% of 

all capital costs go to the construction of the two main reactors. Construction of extra pumps, 

compressors, and drivers were added in order to decrease the chance of facility downtime. 
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Table 5: Facility Cost Breakdown 

 

 

3.6 Operating Costs 

It is common practice to purchase LFG from the landfill operator at 30 to 50 percent below 

the average monthly cost of natural gas on the indexes such as NYMEX [53]. Using LFG at 45% 

of NG prices and considering NG at $3 per MMBTU, LFG is 1.35 $/MMBTU. A detailed method 

of LFG costing is described in Appendix B. The final cost of LFG is 0.84 Million USD per year 

and is a recurring operating cost. 

Many of the values chosen for operating costs represent a less than optimal scenario. 

Maintenance cost of the facility is raised slightly as contamination and variability will inevitably 

cause increased downtime if equipment is not maintained. A breakdown of operating costs in 

shown in Table 6. Utilities are primarily the cost of electricity and cooling water for removal of 

low quality waste heat.  

 

 

 

Unit Name Cost 

Heat Exchangers  $622,000 

Compressors $3,988,000 

Drivers $440,000 

Towers $525,000 

Reforming Reactor $1,300,000 

FTS Reactor $2,500,000 

Iron Packed Beds $408,000 

Carbon Beds $84,000 

Flash Vessels $311,000 

Total Bare Module $9,578,000 

Total Install Cost $11,250,000 
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Table 6: Operating Costs 

 

 

 

Figure 11: Operating Costs Distribution 

 

Table 7: Utilities Pricing 

 

 

 

 

 

13%

23%

64%

Maintenance cost

Cost of Labor

Cost of Materials and

Utilities

Parameter  Cost 

Maintenance 5.5% of FCI $619,000 

Labor  7 operators $1,139,000 

Materials and Utilities  $3,174,000 

Utilities  $1,268,000 

Materials  $457,000 

Clean up  $16,000 

LFG Purchase 45% of NYMEX $840,000 

Total  $4,932,000 

Utility 30◦ C cooling water 

Price per unit $14.8 / 1000 m3 

Price/year $ 1,267,635.80 
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It is assumed all heating fuel that will be needed will come from the processing of non-

usable gas portions. The cost of pretreatment is based on industry pricing for the adsorbent media 

with the large degree of sulfur contamination adding significant costs. The prices for the Sulfa-rite 

and acid washed activated carbon are based on industry specifications from Merichem and Cabot 

Corp [100]. 

Table 8: Raw Materials Cost 

Raw material Sulfa-Rite© Acid washed A.C. 

cost per lb $ 0.50 $ 1.50 

lb / yr 880,175  11,070 

Price/year $440,000 $16,600 

 

The total combined cost for pre-treatment materials is 456,600 $/yr. Disposing of this 

material, as well as waste water generate in the process is 16,522 $/yr 

Table 9: Waste Removal 

Waste Spent packed column 

media 

Hazardous Waste water 

cost per unit $36  per ton $56/1000 m3 

Amount removed 445.6 tons 8,575 m3/yr 

Price/year $16,042 $480 
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3.7 Economic Analysis 

The following tables show the breakdown of the facility economics over its 15 years 

lifespan. In this simulation tax was left at a normal 30% bracket, even though a possibility of being 

in a decreased bracket exist, as this project is a green energy project.  

Table 10: Feasibility Analysis Parameters 

Parameter Value 

Plant Life 15 years 

Tax Rate 30% 

Minimum Attractive Interest 15% 

Depreciation Method MACRS 

Depreciation Life 9 Years 

 

A theoretical sale price of $3 per gallon for diesel and $2.40 per gallon gasoline is used in 

order to create a situation where a profitable sale price occurs. Table 11 shows the breakdown of 

this scenario, where the plant will generate $2.94 million dollars in worth and be paid off in under 

9.5 years. 

Table 11: Plant Financial Analysis  

$3 Diesel, $2.40 gas 

Fixed Capital Investment 11.25 Million $ 

Total Capital Investment 12.5 Million $ 

Operating and Manufacturing Cost 4.93 Million $/yr 

Revenue 7.88 Million $/yr 

Yearly Profit ~2 Million $/yr 

Feasibility Results  

Discounted Payback Time 9.5 Years 

Discounted Cash Flow Rate 

of Return (DCFROR) 

19.7%  

Net Present Worth (NPW) $2.94 Million 
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Figure 12: Financial Flow Chart ($3 Diesel, $2.40 Gas) 

 

 

Figure 13: Discounted Cumulative Cash Flow ($3 Diesel, $2.40 Gas) 
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3.8 Sensitivity Analysis 

A sensitivity analysis was performed based on multiple parameters to determine the major 

components necessary for feasibility of the facility. The analysis was performed so that the 

breakeven cost of diesel could be found (NPW=0). The base case scenario provided a cost of diesel 

at $2.73 and gasoline at $2.18. Gas flow rate was the largest factor, as it is assumed that the facility 

can handle gas flow fluctuations and the production rate was changed by the same percentage 

(assuming that all of values remained the same and only fuel production rate was affected). A 

general swing in price of equipment was included at 20% in order to account for final design 

parameters. Contamination alterations were made (changing the O&M of the preprocessing) 

knowing that the incoming gas could contain a variable degree of contamination. Since the base 

case scenario assumed a near worst case contamination concentration, the majority of the range 

was in decreasing the requirements of contamination reduction beds as contamination was reduced. 

As a change in the concentration of contaminants directly impacts the amount of bed material used, 

no other impact was taken into account.  

  

Figure 14: Economic Sensitivity Factors 

3000, $2.35 

0%, $2.34 

4%, $2.67 

-50%, $2.62 

-20%, $2.53 

2000, $3.35 
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It is important to note that the price of both diesel and gasoline is projected to rise over the 

life of this plant. Therefore, using the previously mentioned prices is rather pessimistic, but is done 

so purposely to offset some unforeseen costs. 

3.9 Product Factors 

It is important to note three factors when generating renewable liquid fuels. The first is 

determining the conversion efficiency when compared to the maximum theoretical conversion of 

LFG into a model hydrocarbon. The second is the amount of CO2 sequestered using the fuel. The 

third is the amount of CO2 not generated by the use of the renewable fuel over the traditional fossil 

source. Results of using the EPA LFG Project Calculator, located in Appendix J, for a 2500 SCFM 

LFG project show a reduction of 13,896 tons of CH4 emissions per year. 

As carbon chains grow the fuel can be represented as nCH2 where the traditional formula 

denotes CnH2n+2. At C14, tetradecane, where the tradition notation shows 14 carbon and 30 

hydrogen atoms, the simplified version denotes 2 less hydrogen atoms (only 7% off).  

 14𝐶𝑂 + 28𝐻2 → 14𝐶𝐻2 + 14𝐻2𝑂 (10) 

Since the FTS reactor converts 75% of syngas in useful hydrocarbons, this is assumed to 

be entirely C14, and the MTR converts methane into syngas at 99% the maximum efficiency for 

fuel generation is 74%. 

A carbon balance, depicted in Table 12 below, was performed to show the ability of the 

system to mitigate carbon emissions by sequestering it in fuels. The LFGTL system removes 30% 

of the carbon which would emitted had it all been flared. A maximum of 55% of the carbon can 

be removed and utilized if the removal process is 100% efficient. This limitation is based on the 

fact that energy is required to convert CO2, without outside energy input methane must be used for 

this purpose. Although this process uses CO2 as a reactant, which is helpful as removal isn’t 
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required, it produces more CO2 than it takes in as some energy from methane is used to generate 

the higher energy fuels. 

Table 12: Carbon Balance 

 LFG Input Diesel Product Gasoline Product Flue Gas 

Moles Carbon /hr 185376 40789 14450 130005 

% Carbon  22% 7.8% 70% 

 

At breakeven the base case scenario prices of $2.73 for diesel and $2.18 for gasoline, an 

approximate $/MMBTU can be generated. This calculation can be found in Appendix D. Increases 

in the products value are seen as a rise in the cost per BTU. Fuels with higher demand and overall 

worth cost more per BTU. Converting landfill gas to diesel increases the $/BTU by 15 times; 1.35 

$/MMBTU LFG to 19.71 $/MMBTU Diesel. 

Table 13: BTU/$ of Conventional and Product Fuels 

Fuel Specification $/MMBTU 

Diesel ULS #2 2.73 $/gal 19.71 

Conventional Gasoline 2.18 $/gal 18.1 

Landfill Gas  45% of NYMEX 1.35 

Electricity (Turbine) 0.065 $/kWh 

13,000 BTU/kWh 

5 

 

Another important factor that should be shown from this project is the energy storage 

capability of the facility. In simpler terms, this would equate to the amount of energy that is 

converted into fuel compared against the amount of energy used to produce the fuel. Table 14 

shows this efficiency by a balance on LFG input and fuel energy output. Further calculations for 

these numbers can be found in Appendix E. 
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Table 14: Energy Storage Efficiency of LFGTL 

 MMBTU/year 

LFG Energy Input 703,825 

Fuel Energy Output 371,266 

Energy Storage 53% 

 

A breakdown of process energy is provided using the heat consumption of the reactors and 

the generation. Of the 83 MMBTU/hr which enters the system, 53% is converted into useable 

fuels, while the rest leaves the plant as thermal energy. A breakdown of these energy flows can be 

found in Appendix E. The MTR reactor requires ~40 MMBTU to preheat and react the incoming 

treated LFG. Approximately 18 MMBTU/hr of heat is required raise the incoming LFG to the 

800C reacting temperature. The remaining 22 MMBTU/hr is required to convert the reactants into 

syngas. 15 MMBTU /hr of the heat required to raise the temperature can be obtained by preheating 

the treated LFG with the hot syngas leaving the MTR reactor; more cannot be used due to pinch 

point limitations. The remaining 25 MMBTU/hr required by the MTR reactor is provided by the 

combustion of waste hydrocarbons from the furnace. 75% of the furnaces total usable thermal 

energy, at ~34 MMBTU/hr (85% of 40 due to parasitic loss), is sent to the reactor, while the 

remaining portion is used to run reboilers throughout the plant. Without the use of heat integration 

and reuse through the plant, an additional 40 MMBTU/hr of heating would be required and 80 

MMBTU/hr of cooling. If heat removed from the FTS, equaling ~20 MMBTU/hr, is converted 

into electricity at 13,000 BTU/kWh, it would generate greater than 1 MW of electricity which 

could power the remainder of the facility. Over the course of the entire conversion, 47% of energy 

is lost as heat through cooling. 
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4 Market Scenario 

4.1 Only Diesel Fuel Can Be Sold 

In a scenario where the gasoline precursor is considered unsellable or unusable, as no third 

party will purchase the product or because more energy is required to heat the furnaces, its sale 

price is reduced to $0 per gallon. In this event no other production factor is changed as it is most 

likely that the product will be burned, regardless of if the extra energy is required. Although this 

does hold promise for the use of electric steam turbines or other energy recovery methods, they 

are not taken into account here. In order to maintain an NPW of $0 over plant lifetime the price of 

diesel must be sold at a minimum of $3.55 per gallon in order to remain feasible at 15% interest. 

4.2 Equipment Downtime is Increased 

In a scenario where the facility has increased downtime, and is operating less than the 

previously identified 351 days per year, profitability decreases. Even though increased 

maintenance scheduling and equipment backups were priced for accessory equipment, failure in 

one of the reactors or distillation columns would cause product loss. In the event the reactor 

catalyst needs to be swapped out greater than once per year, the system would require should down 

for extended periods on multiple occasions. FTS reactors using this catalyst typically take a 

significant amount of time to reach reaction steady state. This leaves days of lower than expected 

production.  

The number of working days is decreased from 351 to 330, or the addition of 3 weeks of 

downtime. This effect is calculated as the following effects on extra days 1) No profit from 

downtime days, 2) 75% reduction in operating costs (heating, cooling, and electricity). As LFG 
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purchasing is under contractual agreement, it must still be purchased on non-operating days. In 

order to maintain an NPW of $0 over plant lifetime the price of diesel must be sold at a minimum 

of $3.76 per gallon in order to remain feasible at 15% interest. If gasoline is also sold the price of 

diesel will be $2.90 per gallon and gasoline will be $2.32 a gallon. 

4.3 Required Capital Investment Ceiling 

In this scenario the price of diesel and gasoline are locked according to a current day sale 

cost, and the purchase price of landfill gas is locked to natural gas projections. The price per gallon 

of diesel projected in 2016 and 2017 is $2.22 and $2.58 according to Energy Information 

Association outlooks (As of February 9th, 2016). Since purchase and sale are known locked 

variables, the cost of capital investment will be altered to find the highest cost of facility 

construction to maintain feasibility. The effect of changing capital cost is far reaching, it is 

essentially altering the plant itself and therefore changes the majority of factors which go it 

feasibility analysis. The only factors which were co-calculated with this analysis were those which 

have the largest effect on feasibility outcome and are not speculative. Therefore depreciation, 

maintenance cost, and salvage value are the other variables which are iterated. Variables such as 

operators, costs associated with contamination, and minor costs were omitted. The following table 

shows the results of changing fuel price on initial plant investment cost. 

Table 15: Capital Ceiling Feasibility 

Sale Price Capital Investment Ceiling 

$2.22 for Diesel 

$1.77 for Gasoline 

$5.60 Million 

$2.58 for Diesel 

$2.06 for Gasoline 

$9.57 Million 
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5 LFG Usage Option Comparison 

The following section will compare the use of LFG for liquid fuel production versus other 

options, such as flaring and electricity generation. A flaring system is installed on every landfill 

and is considered a preexisting cost when approaching installation of another LFG usage option. 

In order to generate 2500 SCFM of gas flow rate, 8.33 Million tons of waste must be in place at 

the landfill. It is assumed that there is 1 collection well per acre, and each well can collect 10-30 

SCFM. This mean that between 83-250 wells are required. 

5.1 Flaring 

The price of a flaring system alone is produced to show the economic impact of LFG 

mitigation without use. The addition of another system will not affect the initial install cost of a 

flare, however, it will greatly reduce or even remove the operating costs associated with its 

discontinued use. Table 16 shows the financial breakdown for a flaring system which generates no 

revenue and only incurs annual costs. Flaring systems do use electricity in their blower and gas 

control systems. 

Table 16: Flaring System Financial Analysis 

Flaring System 

Total Capital Investment 2.8 Million $ 

Operating and Manufacturing Cost 0.5 Million $/yr 

Revenue NONE Million $/yr 

Yearly Profit -0.6 Million $/yr 

Feasibility Results  

Net Present Worth (NPW) 

(15% Rate) 

-4.76 Million $ 
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5.2 Electricity Generation 

A number of different methods exist for the combustion and use of LFG for energy or heat 

generation. Projects that include mass burn have additional advantages, such as the reduction of 

overall mass landfilled, which are not easily quantifiable and comparable to other options. 

Electricity generation can proceed by reciprocating engine, standard or micro turbine, or 

Combined Heat and Power (CHP). Two of these options will be presented, both of which use 

turbines and depend on whether waste heat is utilized in addition to generating electricity. Turbines 

will be used instead of reciprocating engines as generating capacities of greater than 3 MW cannot 

be done without the use of multiple reciprocating engines. Electricity is priced at current national 

industrial purchase price, at 0.065 $/kWh. The discount rate is maintained at 15%. 

The following options show the difference between using waste heat developed in the 

electrical generation process. At this scale, heat recovery is not expensive and develops a 

significant net of 2.4 MM USD over not including it. Heat recovery in this instance is comparable 

to using co-generation in LFGTL and not indicative of heat integration, but the direct sale of 

thermal energy. Electrical generation is greatly dependent on agreements for the sale cost of 

electricity to a network, and the ability to sell off thermal energy as steam. These prices do not 

vary widely, except regionally where electrical distribution prices are different. 

Table 17: CHP Turbine Financial Analysis 

6.4 MW Capacity and 271,000MM BTU/yr produced 

Total Capital Investment 10.9 Million $ 

Operating and Manufacturing Cost 0.8 Million $/yr 

Revenue 4.4 Million $/yr 

Yearly Profit 1.7 Million $/yr 

Feasibility Results  

Discounted Payback Time None Years 

Rate of Return (ROR) 16%  

Net Present Worth (NPW) 

(15% Rate) 

0.4 Million $ 
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Table 18: Turbine Financial Analysis 

6.4 MW Capacity 

Total Capital Investment 9.5 Million $ 

Operating and Manufacturing Cost 0.8 Million $/yr 

Revenue 3.2 Million $/yr 

Yearly Profit 0.8 Million $/yr 

Feasibility Results  

Discounted Payback Time None Years 

Rate of Return (ROR) 10%  

Net Present Worth (NPW) 

(15% Rate) 

-2.0 Million $ 

 

The financial return of these facilities may seem low compared to other literature values, 

this is due to the method by which the system is analyzed. In order to compare the facilities with 

LFGTL, the facility is paid for 100% up front, does not consider a number of inflationary costs, 

and mimics the development of this facility by a private entity purchasing the gas from the landfill 

at 1.35 $/MMBTU. 

5.3 Impact on Greenhouse Gas Emissions Comparison 

It is important to note that any facility that either destroys or uses the CH4 in 2500 SCFM 

of landfill gas will offset 723 Million ft3 of CH4 emissions per year, equal to 0.347 MMTCO2. 

Depending on the use of the LFG, additional equivalent CO2 emissions may be avoided due to the 

offset of fossil fuel use. The following table presents the total emissions offset by each facility. 

CO2 production by electrical generation is based on 2014 U.S. average of 1.18 lb CO2/kWh. 

Table 19: Greenhouse Gas Comparison 

 Flaring LFGTL CHP Turbine Turbine 

CO2 Emissions 

Avoided 

(MMTCO2/yr) 

0 0.029 .044 .026 
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5.4 Facility Comparison Chart 

The following is the comparison of all four of the LFG usage options presented in this 

paper. All units are based on yearly values. Table 21 shows the side by side comparison of these 

options based on economic, emission, and product values. 

Table 20: Comparison Parameters 

Flow Rate 2500 SCFM (1.2636 Billion SCF per year) 

Methane Content 55% 

LFG Energy Content 557 BTU/SCF 

Energy Content 703,825 MMBTU per year 

Carbon Content 1.5616 Billion moles carbon per year 

 

Price of Electricity Sold $0.065 per kWh 

Price of Diesel Sold $3.0 per gallon 

Price of Gasoline Sold $2.4 per gallon 

Price f Steam Sold $4.5 per MMBTU 
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Table 21: LFG Usage Option Comparison 

 LFGTL CH&P Electric Flaring (Only) 

Product Diesel 

Gasoline 

Electricity 

Thermal 

Electricity None 

Product Rate 

(per year) 

2,021,760 gal diesel 

758,160 gal gasoline 

49.36 Million kWh 

271,468 MMBTU Steam 

49.36 Million kWh - 

Energy Required - - - 2.53 Million kWh 

Energy Recovered 

(MMBTU/yr) 

371,266 666,348 394,880 None 

Plant Emissions 

(MMTCO2/yr) 

0.0482 .0703 .0703 0.0703 

Avoided Emissions 

Using Product 

(MMTCO2/yr equiv) 

0.0290 .0440 .0260 0 

Total Emissions 

(Plant-Avoided) 

0.0192 0.0263 0.0443 0.0703 

Capital Investment 

(Million USD) 

12.5 10.5 9.5 2.8 

Operating Expenses 

(Million USD per year) 

4.9 0.8 0.8 0.5 

Net Present Worth 

(15% Rate) 

2.94 0.40 -2.00 -4.76 
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6 Conclusion 

After a preliminary feasibility analysis it is recommended that an investigation into the 

process continue to further develop the use of gas-to-liquids technology on naturally occurring 

biogases. Currently, the feasibility of the project depends on 4 major factors: royalty price paid for 

LFG ($/MMBTU), the capital cost of the installed facility, facility downtime, and is heavily 

dependent of the sale price of the diesel and gasoline products. An experimental facility that is 

based on the price of an economically volatile component incurs a significant amount of risk. A 

price swing of a few cents can have a dramatic effect on profit margins. The LFGTL facility itself 

reduces 30% of CO2 released by options that combust LFG. An additional amount of CO2 

emissions are avoided through the offset of fossil fuel use, however, this process could stand to 

gain with better use of excess facility heat. When LFGTL is compared to electrical generation, an 

additional $2-3 million in capital expenditures are required as well as over ~$4 million per year in 

operating costs. LFGTL also achieves the lowest overall equivalent CO2 emissions, with 27% 

lower emissions compared to CH&P. As the price of liquid fuels rise, the generation of liquid fuels 

will become more attractive than generating electricity. 

6.1  Potential Process Improvements 

Many options remain for further development of the system. Understanding the 

pretreatment and contaminant removal process is vital to the longevity and feasibility of this 

process. Contaminants that are not removed can cause significant damage to capital equipment 

and catalyst beds, further increasing the cost of the facility. It is advised that further research be 

done to find a packing media which is selective to molecules larger than CH4 and CO2 for easy 
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removal. It was assumed that the catalysts would react unfavorably to any contamination present 

in LFG. However, investigation of the actual resistance of the two catalysts to the major 

contaminants found in landfill gases would allow better sizing and construction of the pretreatment 

process.  

Other options remain when looking at processing of the hydrocarbon products. Instead of 

separating it into diesel and gasoline fractions onsite, the hydrocarbon mixture could be sold as a 

high quality, light, sweet crude. The option was looked into for sale to local refineries for post 

processing, however, when the mixture is sold to refineries it must compete with the price of 

incoming crude and its sale price is significantly reduced. This is mainly due to the generation of 

the hydrocarbon stream being the most expensive processing step in both operating and capital 

costs. 

Due to the generation of a large amount of low quality waste heat, it may be advantageous 

to use an air cooling system instead of water cooling using utility. The addition of nitrogen, 

provided by air into the system, either by landfill leaks or from addition of air for use in reforming 

process, decreases the efficiency of the process or will increase the likelihood of byproducts being 

made from nitrogen. A solution to this problem is to use excess waste heat to run turbines, whose 

energy can be used for electricity generation for the facility or used in compressors for air 

separation processing. The coupling of this plant with other facilities in cogeneration will, overall, 

be advantageous. The amount of low quality waste heat is very valuable in water treatment and for 

other industrial processes. Using additional systems, such as solar heating, can reduce the amount 

of energy required for heating allowing a higher recycle rate of gas and subsequent generation of 

more product. In this facility design, water separated from the FTS reactor contains dissolved 
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hydrocarbons and a fee is charged for disposal. However, a more feasible option may be onsite 

cleanup through aeration of the water and desorption of the dissolved hydrocarbons. 

6.2 Market Instability 

It is important to mention that the timing of this thesis coincided with a major crash of 

world oil and fossil fuel prices. At the beginning of my master’s degree, Diesel ULS #2 and 

conventional gasoline hovered between 3 and 4 $/gallon, a level that was generally stable for the 

previous 3 years. Over the next year, this price would fall to under 2 $/gallon. This dramatic change 

is price was due to a large dump of oil from OPEC nations, flooding the market with very cheap 

oil. The price of oil in June of 2014 was over $100 a barrel, and as of writing this paper the price 

of oil has fallen 80% to around 20 $/barrel.  

While the drop in fuel prices has been helpful in some ways to the US economy, it has led 

to many alternative energy projects, such as this one, losing their footing as being economically 

feasible options. Due to a large number of variables and risks in developing a facility like this, a 

large safety margin is usually needed by investors to make alternative energy projects attractive. 

This project’s feasibility competes directly with open sale of transportation fuels, but does not have 

the same protections that large refiners incur. 

This facility holds promise, however, in order for the process to be financially feasible gas 

prices will need to rise above the breakeven point. Additional increases above this point will grant 

a larger margin of safety for investing in this system. 

 

  



50 

 

 

 

References 

1. EIA. International Energy Outlook. 2013  [cited 2014; Available from: 

http://www.eia.gov/forecasts/ieo/world.cfm. 

2. EIA, U.S. Crude Oil and Natural Gas Proved Reserves, 2014. 2015, U.S. Department of 

Energy: Washington D.C. 

3. Oil & Gas Journal, 2008. 106(13). 

4. EIA, SHORT-TERM ENERGY OUTLOOK: February 2016, in Short Term Energy 

Outlook. 2016, Energy Information Association. 

5. Whitney, G., C.E. Behrens, and C. Glover, U.S. Fossil Fuel Resources:Terminology, 

Reporting, and Summary. Congressional Research Service, 2010: p. 24. 

6. Carley, S., State renewable energy electricity policies: An empirical evaluation of 

effectiveness. Energy Policy, 2009. 37(8): p. 3071-3081. 

7. Schnepf, R. and B.D. Yacobucci. Renewable fuel standard (RFS): overview and issues. in 

CRS report for congress. 2013. 

8. Lund, H., Renewable energy strategies for sustainable development. Energy, 2007. 32(6): 

p. 912-919. 

9. Proctor, C. U.S. natural gas reserves at record levels, says School of Mines panel. 2013  

[cited 2014; Available from: 

http://www.bizjournals.com/denver/blog/earth_to_power/2013/04/us-natural-gas-

reserves-hit-record.html?page=all. 

10. Lyubovsky, M., S. Roychoudhury, and R. LaPierre, Catalytic partial ''oxidation of 

methane to syngas'' at elevated pressures. Catalysis Letters, 2005. 99(3-4): p. 113-117. 

11. McKendry, P., Energy production from biomass (part 1): overview of biomass. 

Bioresource technology, 2002. 83(1): p. 37-46. 

12. Andreae, M.O., Biomass burning: its history, use, and distribution and its impact on 

environmental quality and global climate. Global biomass burning: Atmospheric, climatic 

and biospheric implications, 1991: p. 3-21. 

13. Yerkes, R.F., T.H. McCulloh, J. Schoellhamer, and J.G. Vedder, Geology of the Los 

Angeles basin, California: an introduction. US, Geol. Surv., Prof. Pap.;(United States), 

1965. 420. 



51 

 

14. Bertine, K. and E.D. Goldberg, Fossil fuel combustion and the major sedimentary cycle. 

Science, 1971. 173(3993): p. 233-235. 

15. Watanabe, Y., Y. Shimada, A. Sugihara, and Y. Tominaga, Enzymatic conversion of waste 

edible oil to biodiesel fuel in a fixed-bed bioreactor. Journal of the American Oil Chemists' 

Society, 2001. 78(7): p. 703-707. 

16. Tsai, W.-T., C.-C. Lin, and C.-W. Yeh, An analysis of biodiesel fuel from waste edible oil 

in Taiwan. Renewable and Sustainable Energy Reviews, 2007. 11(5): p. 838-857. 

17. Panda, A.K., R. Singh, and D. Mishra, Thermolysis of waste plastics to liquid fuel: A 

suitable method for plastic waste management and manufacture of value added products—

A world prospective. Renewable and Sustainable Energy Reviews, 2010. 14(1): p. 233-

248. 

18. Reddy, B.V., S. Ramesh, A.A. Kumar, S. Wani, R. Ortiz, H. Ceballos, and T. Sreedevi, 

Bio-fuel crops research for energy security and rural development in developing countries. 

Bioenergy Research, 2008. 1(3-4): p. 248-258. 

19. Johnson, J.-F., R. Allmaras, and D. Reicosky, Estimating source carbon from crop 

residues, roots and rhizodeposits using the national grain-yield database. Agronomy 

journal, 2006. 98(3): p. 622-636. 

20. Puig-Arnavat, M., J.C. Bruno, and A. Coronas, Review and analysis of biomass 

gasification models. Renewable and Sustainable Energy Reviews, 2010. 14(9): p. 2841-

2851. 

21. Bahng, M.-K., C. Mukarakate, D.J. Robichaud, and M.R. Nimlos, Current technologies 

for analysis of biomass thermochemical processing: a review. Analytica Chimica Acta, 

2009. 651(2): p. 117-138. 

22. Larson, E.D., R.H. Williams, and M.R.L. Leal, A review of biomass integrated-gasifier/gas 

turbine combined cycle technology and its application in sugarcane industries, with an 

analysis for Cuba. Energy for sustainable development, 2001. 5(1): p. 54-76. 

23. Mitchell, D.A., M. Berovič, and N. Krieger, Solid-state fermentation bioreactor 

fundamentals: Introduction and overview. 2006: Springer. 

24. EPA, Municipal Solid Waste Generation, Recycling, and Disposal in the United States: 

Facts and Figures for 2013. 2015. 

25. Bryant, M.P., Microbial Methane Production—Theoretical Aspects1 , 2. Journal of Animal 

Science, 1979. 48(1). 

26. Themelis, N.J. and P.A. Ulloa, Methane generation in landfills. Renewable Energy, 2007. 

32(7): p. 1243-1257. 



52 

 

27. Townsend, T., A. Byrne, H. Carter, K. Hodoval, and S. Sikora, ALACHUA COUNTY 

WASTE COMPOSITION STUDY. 2010, University of Florida: Alachua County Public 

Works Department. 

28. Barlaz, M.A., J.P. Chanton, and R.B. Green, Controls on landfill gas collection efficiency: 

instantaneous and lifetime performance. Journal of the Air & Waste Management 

Association, 2009. 59(12): p. 1399-1404. 

29. EPA, Landfill Methane Outreach Program. 2014, United States Enviromental Protection 

Agency. 

30. Rasi, S., A. Veijanen, and J. Rintala, Trace compounds of biogas from different biogas 

production plants. Energy, 2007. 32(8): p. 1375-1380. 

31. Piechota, G., B. Igliński, and R. Buczkowski, Development of measurement techniques for 

determination main and hazardous components in biogas utilised for energy purposes. 

Energy Conversion and Management, 2013. 68: p. 219-226. 

32. Wheless, E. and J. Pierce. Siloxanes in landfill and digester gas update. in Proceedings of 

the 27th SWANA Landfill Gas Symposium, San Antonio, TX, March. 2004. 

33. Schweigkofler, M. and R. Niessner, Determination of siloxanes and VOC in landfill gas 

and sewage gas by canister sampling and GC-MS/AES analysis. Environmental science & 

technology, 1999. 33(20): p. 3680-3685. 

34. Wellinger, A. and C. Mandereau, Rationale for siloxane levels, BioSurf, Editor. 2013, 

European Biogas Associastion. 

35. Läntelä, J., S. Rasi, J. Lehtinen, and J. Rintala, Landfill gas upgrading with pilot-scale 

water scrubber: Performance assessment with absorption water recycling. Applied 

Energy, 2012. 92: p. 307-314. 

36. Zhang, S. and Z.C. Zhang, Novel properties of ionic liquids in selective sulfur removal 

from fuels at room temperature. Green Chemistry, 2002. 4(4): p. 376-379. 

37. Blumer, M., Removal of elemental sulfur from hydrocarbon fractions. Analytical 

Chemistry, 1957. 29(7): p. 1039-1041. 

38. Srivastava, V.C., An evaluation of desulfurization technologies for sulfur removal from 

liquid fuels. Rsc Advances, 2012. 2(3): p. 759-783. 

39. Samuels, A., H sub 2 S removal system shows promise over iron sponge. Oil and Gas 

Journal;(USA), 1990. 88(6). 

40. Nagl, G.J., Removing H2S from gas streams. Chemical Engineering, 2001. 108(7): p. 97. 

41. CFR, 40 CFR part 60 subpart WWW  STANDARDS OF PERFORMANCE FOR 

MUNICIPAL SOLID WASTE LANDFILLS, EPA, Editor. 1996. 



53 

 

42. EIA, Voluntary Reporting of Greenhouse Gases Program Fuel Emission Coefficients. 

2011, U.S. Energy Information Association. 

43. IPCC, 2.10.2 Direct Global Warming Potentials. 2007, Intergovernmental Panel on 

Climate Change. 

44. EPA, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2012, U.S.E.P. 

Agency, Editor. 2014. 

45. EPA. Methane Emissions. Emissions 2016  [cited 2016; Available from: 

http://www3.epa.gov/climatechange/ghgemissions/gases/ch4.html. 

46. Spokas, K., J. Bogner, J.P. Chanton, M. Morcet, C. Aran, C. Graff, Y.M. Golvan, and I. 

Hebe, Methane mass balance at three landfill sites: what is the efficiency of capture by gas 

collection systems? Waste Manag, 2006. 26(5): p. 516-25. 

47. IPCC, Climate Change 2014: Mitigation of Climate Change. 2014, Intergovernmental 

Panel on Climate Change. 

48. IPCC, Chapter 2: Waste Generation, Composition and Managment Data, in 2006 IPCC 

Guidelines for National Greenhouse Gas Inventories, I.P.o.C. Change, Editor. 2006. 

49. EPA. Greenhouse Gas Equivalencies Calculator. Energy and the Environment 2015  [cited 

2016; Available from: https://www.epa.gov/energy/greenhouse-gas-equivalencies-

calculator. 

50. CFR, 40 FR Chapter 1 79.55  STATE OPERATING PERMIT PROGRAMS, in 40, EPA, 

Editor. 1997. 

51. Chapter 5: Incineration and Open Burning of Waste, in 2006 IPCC Guidelines for National 

Greenhouse Gas Inventories, I.P.o.C. Change, Editor. 2006. 

52. Bove, R. and P. Lunghi, Electric power generation from landfill gas using traditional and 

innovative technologies. Energy Conversion and Management, 2006. 47(11-12): p. 1391-

1401. 

53. EPA, EPA LFG Energy Project Handbook, E.P. Agency, Editor. 

54. Jaramillo, P. and H.S. Matthews, Landfill-gas-to-Energy projects: analysis of net private 

and social benefits. Environ Sci Technol, 2005. 39(19): p. 7365-73. 

55. Pilarczyk, E., K.-D. Henning, and K. Knoblauch, Natural gas from landfill gases. 

Resources and conservation, 1987. 14: p. 283-294. 

56. Sabatier, P. and J. Senderens, Hydrogenation of CO over nickel to produce methane. J. 

Soc. Chim. Ind, 1902. 21: p. 504-506. 



54 

 

57. Bartholomew, C.H. and R.J. Farrauto, Fundamentals of Industrial Catalytic Processes. 2nd 

ed. 2006, Hoboken, NJ: John Wiley & Sons. 

58. Van Berge, P. and R. Everson. Cobalt as an alternative Fischer-Tropsch catalyst to iron 

for the production of middle distillates. in Fuel and Energy Abstracts. 1997. 

59. Raje, A.P., S.J. Liaw, R. Srinivas, and B.H. Davis, Second row transition metal sulfides 

for the hydrotreatment of coal-derived naphtha I. Catalyst preparation, characterization 

and comparison of rate of simultaneous removal of total sulfur, nitrogen and oxygen. 

Applied Catalysis A: General, 1997. 150: p. 297-318. 

60. Bezemer, G.L., J.H. Bitter, H.P. Kuipers, H. Oosterbeek, J.E. Holewijn, X. Xu, F. Kapteijn, 

A.J. van Dillen, and K.P. de Jong, Cobalt particle size effects in the Fischer-Tropsch 

reaction studied with carbon nanofiber supported catalysts. Journal of the American 

Chemical Society, 2006. 128(12): p. 3956-3964. 

61. Iglesia, E., Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. 

Applied Catalysis A: General, 1997. 161(1): p. 59-78. 

62. Bessell, S., Support effects in cobalt-based fischer-tropsch catalysis. Applied Catalysis A: 

General, 1993. 96(2): p. 253-268. 

63. Gardezi, S.A., B. Joseph, F. Prado, and A. Barbosa, Thermochemical biomass to liquid 

(BTL) process: Bench-scale experimental results and projected process economics of a 

commercial scale process. Biomass & Bioenergy, 2013. 59: p. 168-186. 

64. Gardezi, S.A.Z., J.T. Wolan, and B. Joseph, Technical Presentation: An Integrated 

Approach to the preparation of effective Catalyst for Biomass-to-Liquid (BTL) process in 

Department of Chemical & Biomedical Engineering. USF Tampa. 

65. Gardezi, S.A., L. Landrigan, B. Joseph, and J.T. Wolan, Synthesis of Tailored Eggshell 

Cobalt Catalysts for Fischer–Tropsch Synthesis Using Wet Chemistry Techniques. 

Industrial & Engineering Chemistry Research, 2012. 51(4): p. 1703-1712. 

66. Gardezi, S.A., J.T. Wolan, and B. Joseph, Effect of catalyst preparation conditions on the 

performance of eggshell cobalt/SiO2 catalysts for Fischer-Tropsch synthesis. Applied 

Catalysis a-General, 2012. 447: p. 151-163. 

67. Rostrup-Nielsen, J.R., Catalytic steam reforming. 1984: Springer. 

68. Rostrup-Nielsen, J.R. and J. Sehested, Hydrogen and Synthesis Gas by Steam- and CO2 

Reforming. Advances in Catalysis, 2002. 47: p. 65. 

69. Sukonket, T., A. Khan, B. Saha, H. Ibrahim, S. Tantayanon, P. Kumar, and R. Idem, 

Influence of the catalyst preparation method, surfactant amount, and steam on CO2 

reforming of CH4 over 5Ni/Ce0. 6Zr0. 4O2 catalysts. Energy & Fuels, 2011. 25(3): p. 864-

877. 



55 

 

70. Cho, W.J., T.Y. Song, A. Mitsos, J.T. McKinnon, G.H. Ko, J.E. Tolsma, D. Denholm, and 

T. Park, Optimal design and operation of a natural gas tri-reforming reactor for DME 

synthesis. Catalysis Today, 2009. 139(4): p. 261-267. 

71. Song, C. and W. Pan, Tri-reforming of methane: a novel concept for catalytic production 

of industrially useful synthesis gas with desired H 2/CO ratios. Catalysis Today, 2004. 

98(4): p. 463-484. 

72. Farniaei, M., H. Rahnama, M. Abbasi, and M.R. Rahimpour, Simultaneous production of 

two types of synthesis gas by steam and tri-reforming of methane using an integrated 

thermally coupled reactor: mathematical modeling. International Journal of Energy 

Research, 2014. 38(10): p. 1260-1277. 

73. Rostrup-Nielsen, J.R., Activity of nickel catalysts for steam reforming of hydrocarbons. 

Journal of Catalysis, 1973. 31(2): p. 173-199. 

74. Pakulska, M.M., C.M. Grgicak, and J.B. Giorgi, The effect of metal and support particle 

size on NiO/CeO2 and NiO/ZrO2 catalyst activity in complete methane oxidation. Appl. 

Catal. A: Gen., 2007. 332: p. 124-129. 

75. Goguet, A., F. Meunier, J.P. Breen, R. Burch, M.I. Petch, and A.F. Ghenciu, Study of the 

origin of the deactivation of a Pt/CeO2 catalyst during reverse water gas shift (RWGS) 

reaction. J. Catal., 2004. 226: p. 382-392. 

76. Kobune, M., S. Sato, and R. Takahashi, Surface-structure sensitivity of CeO2 for several 

catalytic reactions. J. Mol. Catal. A: Chem., 2008. 279: p. 10-19. 

77. Vita, A., G. Cristiano, C. Italiano, L. Pino, and S. Specchia, Syngas production by methane 

oxy-steam reforming on Me/CeO2 (Me=Rh, Pt, Ni) catalyst lined on cordierite monoliths. 

Applied Catalysis B: Environmental, 2015. 162: p. 551-563. 

78. Zhang, R., Y. Wang, and R.C. Brown, Steam reforming of tar compounds over Ni/olivine 

catalysts doped with CeO2. Energy Conversion & Management, 2007. 48: p. 68. 

79. Dong, W.-S., K.-W. Jun, H.-S. Roh, Z.-W. Liu, and S.-E. Park, Comparative study on 

partial oxidation of methane over Ni/ZrO2, Ni/CeO2 and Ni/Ce–ZrO2 catalysts. Catalysis 

Letters, 2002. 78(1/4): p. 215-222. 

80. Itome, M. and A.E. Nelson, Methane oxidation over M–8YSZ and M–CeO2/8YSZ (M=Ni, 

Cu, Co, Ag) catalysts. Catalysis Letters, 2006. 106(1-2): p. 21. 

81. Kumar, P., Y. Sun, and R.O. Idem, Nickel-Based Ceria, Zirconia, and Ceria–Zirconia 

Catalytic Systems for Low-Temperature Carbon Dioxide Reforming of Methane. Energy & 

Fuels, 2007. 21(6): p. 3113-3123. 

82. Guo, Y. and Z. Dong, Well-dispersed Ceria-promoted Sulfated Zirconia Supported on 

Mesoporous Silica. Catal. Lett., 2007. 119: p. 120-125. 



56 

 

83. Chen, X.R., Y.H. Ju, and C.Y. Mou, Direct synthesis of mesoporous sulfated silica-

zirconia catalysts with high catalytic activity for biodiesel via esterification. Journal of 

Physical Chemistry C, 2007. 111(50): p. 18731-18737. 

84. Dajiang, M., C. Yaoqiang, Z. Junbo, W. Zhenling, M. Di, and G. Maochu, Catalytic Partial 

Oxidation of Methane over Ni/Ce02 - ZrO2-Al203. JOURNAL OF RARE EARTHS, 2007. 

25: p. 311-315. 

85. Youn, M.H., J.G. Seo, K.M. Cho, S. Park, D.R. Park, J.C. Jung, and I.K. Song, Hydrogen 

production by auto-thermal reforming of ethanol over nickel catalysts supported on Ce-

modified mesoporous zirconia: Effect of Ce/Zr molar ratio. International journal of 

hydrogen energy, 2008. 33(19): p. 5052-5059. 

86. Laosiripojana, N. and S. Assabumrungrat, Methane steam reforming over Ni/Ce–ZrO 2 

catalyst: Influences of Ce–ZrO 2 support on reactivity, resistance toward carbon 

formation, and intrinsic reaction kinetics. Applied Catalysis A: General, 2005. 290(1): p. 

200-211. 

87. Noronha, F.B., E.C. Fendley, R.R. Soares, W.E. Alvarez, and D.E. Resasco, Correlation 

between catalytic activity and support reducibility in the CO 2 reforming of methane over 

Pt/Ce x Zr 1− x O 2 catalysts. Chemical Engineering Journal, 2001. 82(1): p. 21-31. 

88. Somorjai, G.A. and Y. Li, Introduction to Surface Chemistry and Catalysis. 2 ed. 2010, 

New Jersey: John Wiley & Sons, Inc. 

89. Christian Enger, B., R. Lødeng, and A. Holmen, A review of catalytic partial oxidation of 

methane to synthesis gas with emphasis on reaction mechanisms over transition metal 

catalysts. Applied Catalysis A: General, 2008. 346(1-2): p. 1-27. 

90. Bengaard, H.S., J.K. Nørskov, J. Sehested, B.S. Clausen, L.P. Nielsen, A.M. Molenbroek, 

and J.R. Rostrup-Nielsen, Steam Reforming and Graphite Formation on Ni Catalysts. 

Journal of Catalysis, 2002. 209: p. 365. 

91. Czekaj, I., F. Loviat, F. Raimondi, J. Wambach, S. Biollaz, and A. Wokaun, 

Characterization of surface processes at the Ni-based catalyst during the methanation of 

biomass-derived synthesis gas: X-ray photoelectron spectroscopy (XPS). Applied 

Catalysis A: General, 2007. 329: p. 68-78. 

92. Lu, Y., J.Z. Xue, C.C. Yu, Y. Liu, and S.K. Shen, Mechanistic investigations on the partial 

oxidation of methane to synthesis gas over a nickel-on-alumina catalyst. Applied Catalysis 

a-General, 1998. 174(1-2): p. 121-128. 

93. Diskin, A.M., R.H. Cunningham, and R.M. Ormerod, The oxidative chemistry of methane 

over supported nickel catalysts. Catal. Tod., 1998. 46: p. 147-154. 

94. Walker, D.M., S.L. Pettit, J.T. Wolan, and J.N. Kuhn, Synthesis gas production to desired 

hydrogen to carbon monoxide ratios by tri-reforming of methane using Ni–MgO–

(Ce,Zr)O2 catalysts. Applied Catalysis A: General, 2012. 445-446: p. 61-68. 



57 

 

95. Rakopoulos, C., K. Antonopoulos, D. Rakopoulos, D. Hountalas, and E. Giakoumis, 

Comparative performance and emissions study of a direct injection diesel engine using 

blends of diesel fuel with vegetable oils or bio-diesels of various origins. Energy 

conversion and management, 2006. 47(18): p. 3272-3287. 

96. Demirbas, A., Progress and recent trends in biofuels. Progress in energy and combustion 

science, 2007. 33(1): p. 1-18. 

97. Thomas, C.S., Transportation options in a carbon-constrained world: Hybrids, plug-in 

hybrids, biofuels, fuel cell electric vehicles, and battery electric vehicles. International 

Journal of Hydrogen Energy, 2009. 34(23): p. 9279-9296. 

98. Erwin, J., Assay of diesel fuel components properties and performance in Symposium on 

processing and produt seletivityof synthetic fuels. 1992, American Chemical Society: 

Washington D.C. 

99. Wheless, E. and J. Pierce, Siloxanes in Landfill and Digester Gas Update. 2003, SCS 

Engineers. 

100. Heguy, D. and J. Bogner, Cost-Effective Hydrogen Sulfide Treatment Strategies for 

Commercial Landfill Gas Recovery. 2015, Merichem Company. 

101. EPA. Landfill Methane Outreach Project: Operational Landfills Data. 2016 1/20/2016 

[cited 2016; Available from: http://www3.epa.gov/lmop/projects-

candidates/operational.html. 

102. Turton, R., R.C. Bailie, W.B. Whiting, J.A. Shaeiwitz, and D. Bhattacharyya, Analysis, 

Synthesis, and Design of Chemical Processes. 4th ed. 2013: Pearson. 

103. DOE, Alternative Fuels Comparison Chart, A.F.D. Center, Editor. 2015, Department of 

Energy. 

104. Prometheus_Energy, LNG Quick Facts Sheet. 2015. 

105. NIST, Report of the 78th National Conference on Weights and measures, in NIST Special 

Publication. 1993. p. pp 322-326. 

106. ORNL, Heating Values of Fuels. 2011, Oak Ridge National Labs: Biomass Energy Data 

Book. 

107. EIA. Natural Gas Spot Prices : NYMEX. 2016  [cited 2016 2/9/2016]; Available from: 

https://www.eia.gov/dnav/ng/ng_pri_fut_s1_w.htm. 

 

 



58 

 

 

 

Appendices 

  



59 

 

Appendix A. EPA LFG Calculation (Average Landfill Size) 

Calculations for average LFG production were made using data provided by the EPA 

Landfill Methane Outreach Project. As of March 2015 the EPA published that 645 projects belong 

to 595 unique landfill sites. These numbers are reported by the EPA as such  

 

“The information contained in the LMOP database is compiled from a variety of 

sources, including annual voluntary submissions by LMOP Partners and industry 

publications. Due to the limitations of voluntary reporting, LMOP cannot guarantee the 

accuracy of these data.”[101] 

 

All numbers reported units of million standard cubic feet a day (mmscfd) or standard cubic 

feet per minute (scfm). All of these values are based on unique, operational, and reporting landfills. 

Landfills that do not provide gas data are not included. 

Table A: Landfill Operation Statistics 

Number of Unique, Operational Landfills 

reporting LFG collection 

514 

Total LFG Collection (mmscfd) 1460 

Average LFG Flow Rate (mmscfd) 2.84013 

Avg. LFG Flow Rate (scfm) 1972 

Avg. LFG Flared (scfm) 483 

 

𝑚𝑠𝑐𝑓

𝑑𝑎𝑦
∗

1 𝑑𝑎𝑦

1440 𝑚𝑖𝑛
∗

106𝑠𝑐𝑓

1 𝑚𝑠𝑐𝑓
 1 𝑚𝑠𝑐𝑓𝑑 = 694.44 𝑠𝑐𝑓𝑚 
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Appendix B. Calculation of Landfill Gas Price 

 

 

Figure A: Natural Gas Price History 

 

Landfill gas is typically sold at 40-60% the cost of Open market Natural Gas prices. It 

would seem that a usable number would be 50%, as that is close to the composition of methane in 

LFG, however 45% was chosen in order to use a scenario in which the LFG was heavily 

contaminated and would incur additional costs to users. 
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 Methane content of LFG is 55%. 

 Methane heat content is 1,012 Btu/scf methane 

 1012 𝐵𝑡𝑢

𝑠𝑐𝑓 𝑚𝑒𝑡ℎ𝑎𝑛𝑒
∗

0.55 𝑠𝑐𝑓 𝑚𝑒𝑡ℎ𝑎𝑛𝑒

1 𝑠𝑐𝑓 𝐿𝐹𝐺
∗

1 𝑀𝑀𝐵𝑇𝑈

106 𝐵𝑇𝑈
=

0.000557 𝑀𝑀𝐵𝑇𝑈

𝑠𝑐𝑓 𝐿𝐹𝐺
 

 

 At the time of this plant design natural gas was at ~3 $/MMBTU. 

 LFG is 45% of Natural gas cost 

 3 $

𝑀𝑀𝐵𝑇𝑈 𝑁𝐺
∗

0.45 $ 𝐿𝐹𝐺

1 $ 𝑁𝐺
= 1.35 

$

𝑀𝑀𝐵𝑇𝑈 𝐿𝐹𝐺
 

 

 1.35 $

𝑀𝑀𝐵𝑇𝑈 𝐿𝐹𝐺
∗

0.000557 𝑀𝑀𝐵𝑇𝑈

𝑠𝑐𝑓 𝐿𝐹𝐺
= 0.000752

$

𝑠𝑐𝑓 𝐿𝐹𝐺
 

 

 
2500

𝑠𝑐𝑓

𝑚𝑖𝑛
∗  0.000752

$

𝑠𝑐𝑓 𝐿𝐹𝐺
=  1.88

$

𝑚𝑖𝑛
  ($2700 𝑝𝑒𝑟 𝑑𝑎𝑦) 

 

 Using an operating factor of 85% (Net capacity factor, for gas flow variability and 

parasitic loses) 

 2700
$

𝑑𝑎𝑦
∗  0.85 ∗ 365

days

yr
= ~0.84 𝑀𝑖𝑙𝑙𝑖𝑜𝑛 𝑈𝑆𝐷 $   
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Appendix C. Cost of Labor 

 

To estimate the cost of labor the number of operators was calculated using the following 

equations which can be found in Turton et al. [102] 

NOL= (6.29 + 31.7P2 + 0.23NNP) 0.5 

P is the number of processing steps involving the handling of particulate solids. NNP is the 

number of nonparticulate processing steps or NNP= sum (Equipment). NOL is the number of 

operators per shift. 

NOL= (6.29 + 31.7(0)2 + 0.23*(15)) 0.5 

NOL=3.12 operators per shift 

Due to relativity increased level of automation, in part due to the difficulty of running FTS reactors, 

the plant is very automated, allowing a decreased cost of typical operators to 50% normal. 

NOL=1.56 operators per shift 

Assuming the plant is operating 365 days a year with 5 eight hour shifts per week per 

operator you will need 1095 shifts per year with 245 shifts per operator year. 

𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 = 1.56 ∗
1095

245
= 7 operators 

 

Labor Cost = (7 operators x $59,580) = $417,061 
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Appendix D. Calculation of Gallon Gasoline Equivalency 

The values listed below were compiled from a number of sources on the energy density of 

common fuels. The energy density of NG is greater per pound, however its density is relativity 

low, giving a fraction of the energy when its volume is the determining factor. 

Table B: Gallon Gasoline Equivalency 

Fuel Energy Content  

Low-Sulfur Highway Diesel 138, 490 BTU/gal 18,320 BTU/lb 

Conventional Gasoline 120,388 BTU/gal 18,679 BTU/lb 

Natural Gas (compressed) ---- 20,267 BTU/lb 

Natural Gas (Liquefied) 82,644 BTU/gal 20,908 BTU/lb 

[103-106] 

At the selling prices used in this paper above. The price of natural gas used for this analysis is a 

long term average of the cost and is not directly reflected by current prices. 

Diesel is $2.73 a gallon, and gasoline is $2.1840 per gallon. 

 
138490

𝐵𝑇𝑈

𝑔𝑎𝑙
∗

1

2.73

𝑔𝑎𝑙

$
=  49110

𝐵𝑇𝑈

$
 

(1) 

 

Table C: BTU/$ 

Fuel BTU/$ $/MMBTU 

Low-Sulfur Highway Diesel 50,736 19.71 

Conventional Gasoline 55,224 18.1 

Natural Gas 333,333 3 

Landfill Gas (45% NYMEX) 740,741 1.35 
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Appendix E. LFGTL Energy Distribution 

The energy flow in can be calculated by using 557 BTU/SCFM of LFG. 

2500 𝑆𝐶𝐹𝑀 ∗ 557
𝐵𝑇𝑈

𝑆𝐶𝐹𝑀
∗

1

106

𝑀𝑀𝐵𝑇𝑈

𝐵𝑇𝑈
= 1.39

𝑀𝑀𝐵𝑇𝑈

𝑚𝑖𝑛
    

(83.55
𝑀𝑀𝐵𝑇𝑈

ℎ𝑟
)( 713,851

𝑀𝑀𝐵𝑇𝑈

𝑦𝑟
 ) 

The energy out can be calculated using BTU/gal numbers from Table B. 

138490
𝐵𝑇𝑈

𝑔𝑎𝑙 𝑑𝑖𝑒𝑠𝑒𝑙
∗ 240

𝑔𝑎𝑙 𝑑𝑖𝑒𝑠𝑒𝑙

ℎ𝑟
∗

1

106

𝑀𝑀𝐵𝑇𝑈

𝐵𝑇𝑈
= 33.24

𝑀𝑀𝐵𝑇𝑈

ℎ𝑟
 

120388
𝐵𝑇𝑈

𝑔𝑎𝑙 𝑔𝑎𝑠
∗ 90

𝑔𝑎𝑙 𝑔𝑎𝑠

ℎ𝑟
∗

1

106

𝑀𝑀𝐵𝑇𝑈

𝐵𝑇𝑈
= 10.83

𝑀𝑀𝐵𝑇𝑈

ℎ𝑟
 

( 44.07
𝑀𝑀𝐵𝑇𝑈

ℎ𝑟
 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑)( 376,576 

𝑀𝑀𝐵𝑇𝑈

𝑦𝑟
)  

Table D: Energy Flow in LFGTL 

Section Type MMBTU/hr 

Landfill Gas Stream (Energy In) 83.55 

Fuel Production Stream (Energy Out) -40.115 

Heat Leaving Heat (Energy Out) -43.4 

   

Furnace Usage Heat (Generation) 43 

Tri-Reformer (MTR Reactor) Heat (Consumption) -22.15 

Fired Heater  Heat (Consumption) -18.1 

Fischer Tropsch Reactor Heat (Generation) 23.1 

Driver Power Electricity (Consumption) -2 
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Appendix F. Reactor Outputs 

Table E: Fischer Tropsch Reactor Output 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Chemical Mass % 

Hydrogen 0.007606 

Water 0.174952 

Carbon Monoxide 0.110269 

Carbon Dioxide 0.519313 

Methane 0.008907 

Propane 0.007098 

Ethane 0.00852 

Propene 0.006302 

N-Butane 0.01469 

I-Pentane 0.014507 

N-Hexane 0.013956 

N-Heptane 0.011542 

N-Octane 0.010405 

N-Nonane 0.009626 

N-Decane 0.008035 

N-Undecane 0.006831 

N-Dodecane 0.005432 

N-Tridecane 0.005008 

N-Tetradecane 0.004452 

N-Pentadecane 0.003638 

N-Hexadecane 0.003209 

N-Heptadecane 0.002698 

N-Nonadecane 0.001954 

N-Eicosane 0.001586 

N-Octadecane 0.001168 

NH3 0 

Oxygen 0 

Nitrogen 0.018774 

Ethylene 0.015628 

 0.000981 

docosane 0.00088 

N-Tricosane 0.000728 

N-Tetracosane 0.00068 

N-pentacosane 0.000625 
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Table F: MTR Reactor Output 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chemical Mass % 

Hydrogen 0.07921232 

Water 0.001850625 

Carbon Monoxide 0.5482671 

Carbon Dioxide 0.3556202 

Methane 0.001786542 

Propane 9.999407e-007 

Ethane 1.126095e-006 

Propene 1.288773e-005 

N-Butane 1.149542e-006 

I-Pentane 1.67676e-005 

N-Hexane 1.157184e-005 

N-Heptane 4.705648e-006 

N-Octane 1.58357e-006 

N-Nonane 5.527469e-007 

N-Decane 1.745998e-007 

N-Undecane 4.591474e-008 

N-Dodecane 1.2804e-008 

N-Tridecane 3.271031e-009 

N-Tetradecane 1.419595e-009 

N-Pentadecane 4.410317e-010 

N-Hexadecane 1.224802e-010 

N-Heptadecane 6.03382e-011 

N-Nonadecane 9.854508e-012 

N-Eicosane 2.85634e-012 

N-Octadecane 5.804425e-013 

NH3 0 

Oxygen 0 

Nitrogen 0.01320931 

Ethylene 2.305658e-006 

 1.911166e-013 

docosane 7.06271e-014 

N-Tricosane 2.084904e-014 

N-Tetracosane 5.056259e-015 

N-pentacosane 1.740997e-015 
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Appendix G. Chemcad Plant Design 

 

Figure B: ChemCAD CFD 
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Appendix H. Composite Cost of a Gallon of Gasoline 

 

Figure C: Gas Price Breakdown 
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Appendix I. Fossil Fuels Market Prices 

Data is compiled from EIA sources on weekly fuel price updates on a national average[107] 

 

Figure D: Fuel Price History 

 

0

1

2

3

4

5

6

7

10/18/2012 5/6/2013 11/22/2013 6/10/2014 12/27/2014 7/15/2015 1/31/2016 8/18/2016

U
S

 $
/g

a
ll

o
n

 (
M

M
B

T
U

 f
o

r 
N

G
)

Gasoline

Diesel

Natural Gas

(NYMEX)



70 

 

Appendix J. EPA LFG Project Calculator Results 

Table G: EPA Calculator 

 

 
 

          

 

 
 

Emission Reductions and Environmental and Energy Benefits for Landfill Gas Energy Projects 

 
            

         For electricity generation 
projects, 
         enter megawatt (MW) 
capacity: 

       For direct-use projects, 
     enter landfill gas utilized by 
project: 

  
million standard cubic feet per day 
(mmscfd) 

       - OR - or    

        2,500 standard cubic feet per minute (scfm) 

            

Direct Equivalent Emissions Reduced Avoided Equivalent Emissions Reduced Total Equivalent Emissions Reduced 

[Reduction of methane emitted directly from the landfill] 
[Offset of carbon dioxide from avoiding the use of 

fossil fuels] [Total = Direct + Avoided] 

MMTCO2E/yr tons CH4/yr MMTCO2E/yr tons CO2/yr MMTCO2E/yr 
tons 

CH4/yr tons CO2/yr 
million metric tons of 

carbon dioxide equivalents 
per year 

tons of methane per year 
million metric tons of 

carbon dioxide 
equivalents per year 

tons of carbon dioxide 
per year 

million metric tons of 
carbon dioxide 

equivalents per year 

tons of 
methane per 

year 

tons of carbon 
dioxide per year 

0.3152 13,896 0.0311 34,299 0.3463 13,896 34,299 
Equivalent to any one of the following annual 
benefits: 

Equivalent to any one of the following 
annual benefits: 

Equivalent to any one of the following annual 
benefits: 

Environmental Benefits    
Environmental 
Benefits    

Environmental 
Benefits    

• Carbon sequestered by __ acres of U.S. 
forests in one year: 

258,321 
• Carbon sequestered by __ acres of 
U.S. forests in one year: 

25,505 
• Carbon sequestered by __ acres of 
U.S. forests in one year: 

283,826 

• CO2 emissions from __ barrels of oil 
consumed: 

732,909 
• CO2 emissions from __ barrels of oil 
consumed: 

72,364 
• CO2 emissions from __ barrels of oil 
consumed: 

805,273 

• CO2 emissions from __ gallons of 
gasoline consumed: 

35,462,032 
• CO2 emissions from __ gallons of 
gasoline consumed: 

3,501,348 
• CO2 emissions from __ gallons of 
gasoline consumed: 

38,963,379 

    

Energy Benefits (based on project size 
entered):     

View Calculations and References  • Heating __ homes:  8,635     

 

file:///C:/Users/Ryan/Downloads/lfge_benefitscalc_2014%20(1).xlsx%23'Calculations%20and%20References'!A1
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Appendix K. Electrical Turbine Economics Output 

STANDARD TURBINE-GENERATOR SET     

 

         

Cost Component Cost (2008$'s) Cost Unit    

Installed cost of gas compression/treatment, 
turbine/generator, site work, and housings 

$2,340(x) - 
0.103(x2) $, x = kW capacity  [$1,015/kW for ($2,340 - 0.103/kW capacity) < 1,015] 

Installed cost of electrical interconnect equipment   $250,000 per system    

Annual O&M of compression/treatment and 
turbine/generator (excluding energy)  $0.0144 per kWh generated    

          

Project Component Quantity       

Gross capacity factor 
(%)  93%  

 
    

System operating schedule (hours/year) 8,147       

Fuel use rate (Btu/kWh 
generated)  13,000  

 
    

Parasitic loss efficiency 
(%)  88%  

 
    

Landfill gas heat 

content (Btu/ft3)  557  
 

    

Turbine capacity (kW)  6,885       

Installed Capital Costs:   2015 
Gas Compression/Treatment, Turbine/Generator, Site Work, and 
Housings: $9,228,104 
Electrical Interconnect 
Equipment:   $250,000 
Total Capital Costs Including Cost 
Contingency  $9,478,104 
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CHP TURBINE-GENERATOR 
SET 
        

Cost Component  
Cost 

(2008$'s) Cost Unit 

Installed cost of gas compression/treatment, 
turbine/generator, site work, and housings     

$2,340(x) 

- 0.103(x2) 
$, x = kW capacity  [$1,370/kW for ($2,340 - 0.103(x)) < 
$1,370] 

Installed cost of heat exchangers     $355(x) $, x = kW capacity 

Installed cost of electrical interconnect 
equipment    $250,000 per system 

Installed cost of gas pipeline     $63 per ft 
Installed cost of steam pipelines (assumes 2 lines for 
supply and return)   $106 per ft of trench 

Installed cost of circulation pump     $12,000 per system 
Annual O&M of compression/treatment, turbine/generator, 
and exchangers (excluding energy)  $0.0144 per kWh generated 

        

Project Component Quantity     

Gross capacity factor (%)  93%     

System operating schedule (hours/year)  8,147     

Fuel use rate (Btu/kWh generated)  13,000     

Steam production (Btu/kWh, net)  5,500     

Parasitic loss efficiency (%)  88%     

Landfill gas heat content (Btu/ft3)  557     

Turbine capacity (kW)  6,885     

Installed Capital Costs:     2015 

Gas Compression/Treatment, Turbine/Generator, Site Work, and Housings:   $9,228,104 

Heat Recovery Exchangers:     $2,444,073 

Electrical Interconnect Equipment:     $250,000 

Gas Pipeline:      $0 

Steam Pipelines and Circulation Pump:     $12,000 

Total Capital Costs Including Cost Contingency    $10,934,177 
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 Cap and Flaring System 
Cost Component Cost (2013$'s) 

Drilling and pipe crew mobilization  $20,000 

Installed cost of vertical gas extraction wells  $4,675 

Installed cost of wellheads and pipe gathering system $17,000 

Installed cost of knockout, blower, and flare system (x)0.61 * $4,600 

Engineering, permitting, and surveying  $700 

Annual O&M for collection (excluding energy)  $2,600 

Annual O&M for flare (excluding electricity)  $5,100 

Electricity price (depends on type of project)  $0.065 

    

Project Component Quantity 

Average depth of landfill waste (ft)  65 

Number of wells (1 well per acre)  100 

Number of flares (1 flare per system)  1 

Collected landfill gas design flow rate (ft3/min)  2,941 

Electricity usage by blowers (kWh/ft3)  0.002 

    

Installed Capital Costs:  2015 

Mobilization:   $20,000 

Extraction Wells:   $467,500 

Wellheads and Pipe Gathering System:  $1,700,000 

Knockout, Blower, and Flare System:  $600,559 

Engineering, Permitting, and Surveying:  $70,000 

Total Capital Costs Including Cost Contingency $2,858,059 

Annual Costs:   

Year 2016 

   

O&M for Collection $260,000 

   

O&M for Flare $5,100 

   

Electricity $200,965 

   

Total Annual Costs $466,065 

Including Cost Contingency  
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